Skip to main content
Log in

A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibagué (~500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15 million m3 volume are based on melting of 1, 2, 10, and 25 % of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100 years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibagué are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aceves-Quesada JF, Díaz-Salgado J, López-Blanco J (2007) Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach. Nat Hazards 40:339–356

    Article  Google Scholar 

  • Alcaldía de Ibagué (unpublished) Pastales: Documento Técnico. Departamento Administrativo de Planeación Municipal, p 111

  • Alcaldía de Ibagué (2003) Anuario Estadístico de Ibagué 2001–2003. Departamento Administrativo de Planeación Municipal, p 366

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124

    Article  Google Scholar 

  • Armenakis C, Nirupama N (in press) Prioritization of disaster risk in a community using GIS. Nat Hazards

  • Azar D, Rain D (2007) Identifying population vulnerable to hydrological hazards in San Juan, Puerto Rico. GeoJournal 69(1):23–43

    Article  Google Scholar 

  • Bara C (2010) Factsheet: social vulnerability to disasters. Center for security studies (CSS), ETH Zurich, p 19

  • Barnes HH Jr (1967) Roughness characteristics of natural channels. U.S. Geological Survey Water Supply Paper 1849, U.S. Department of the Interior

  • Barrios Peña MI, Olaya Marín EJ (2007) Evaluación integral del riesgo por avenidas torrenciales caso Villa Restrepo, Ibagué-Tolima, Master thesis, University of Tolima

  • Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bíldudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131

    Article  Google Scholar 

  • Birkmann J, von Teichman K (2010) Integrating disaster risk reduction and climate change adaptation: key challenges—scales, knowledge, and norms. Sustain Sci 5(2):171–184

    Article  Google Scholar 

  • Blong R (2003) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65:43–54

    Google Scholar 

  • Brooks N, Neil Adger W, Mick Kelly P (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Change Part A 15(2):151–163

    Article  Google Scholar 

  • Bründl M, Romang HE, Bischof N, Rheinberger CM (2009) The risk concept and its application in natural hazards risk management in Switzerland. Nat Hazards Earth Syst Sci 9:801–813

    Article  Google Scholar 

  • Brunner GW (2002) HEC-RAS, river analysis system, hydraulic reference manual, Hydrologic Engineering Center. US Army Corps of Engineers, Davis

    Google Scholar 

  • Cantagrel J, Robin C, Murcia A, Salinas R, Cepeda H (1995) Quaternary history and hazard-zone model at Nevado del Tolima and Cerro Machin Volcanoes, Colombia. J Volcanol Geotherm Res 66:397–426

    Article  Google Scholar 

  • Cardona OD (2006) A system of indicators for disaster risk management in the Americas. In: Birkmann J (ed) Measuring vulnerability to hazards of natural origin: towards disaster resilient societies. United Nations University Press, Tokyo, pp 189–209

    Google Scholar 

  • Castellanos Abella E, van Westen C (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4:311–325

    Article  Google Scholar 

  • Cepeda H, Murcia LA (1988) Mapa preliminar de amenaza volcanica potential del Nevado del Tolima, Colombia, S.A. Informe 2070. INGEOMINAS, Ministerio de Minas y Energia

  • Chow VT (1959) Open-channel hydraulics. McGraw-Hill civil engineering series, New York

    Google Scholar 

  • CORTOLIMA (2006a) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Juntas, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60

    Google Scholar 

  • CORTOLIMA (2006b) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Llanitos, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 61

    Google Scholar 

  • CORTOLIMA (2006c) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Pastales, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 61

    Google Scholar 

  • CORTOLIMA (2006d) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Pico de Oro, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60

    Google Scholar 

  • CORTOLIMA (2006e) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Villa Restrepo, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60

    Google Scholar 

  • Cox JR, Rosenzweig C, Solecki WD, Goldberg R, Kinney PL (2007) Social vulnerability to climate change: a neighborhood analysis of the Northeast U.S. Megaregion, Union of Concerned Scientists, Cambridge, p 21. http://www.northeastclimateimpacts.org/pdf/tech/cox_et_al.pdf. Accessed 5 Jan 2012

  • Cutter SL (1996) Vulnerability to environmental hazards. Prog Hum Geogr 20:529–539

    Article  Google Scholar 

  • Cutter SL, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. Proc Natl Acad Sci 105(7):2301–2306

    Article  Google Scholar 

  • Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Ann As Am Geogr 90(4):713–737

    Article  Google Scholar 

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261

    Article  Google Scholar 

  • D’Ercole R, Metzger P (2009) La vulnerabilité territorial: une nouvelle approche des risqué en milieu urbain. Cybergeo Eur J Geogr (online). http://cybergeo.revues.org/index22022.html

  • Degg MR, Chester DK (2005) Seismic and volcanic hazards in Peru: changing attitudes to disaster mitigation. Geogr J 171:125–145

    Article  Google Scholar 

  • Dibben C, Chester DK (1999) Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. J Volcanol Geotherm Res 92(1–2):133–150

    Article  Google Scholar 

  • Dikau R, Weichselgartner J (2005) Der unruhige Planet—Der Mensch und die Naturgewalten. Primus Verlag, Germany

    Google Scholar 

  • DNP (2003) Resultados de la encuesta de evaluación del SISBEN a nivel municipal. Departamento Nacional de Planeación. Misión Social, Programa Naciones Unidas para el Desarrollo, Bogotá, p 107

    Google Scholar 

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288

    Article  Google Scholar 

  • Dyhouse G, Benn JR, Hatchett J (2003) Floodplain modeling using HEC-RAS, Heastad Methods

  • ESRI (2011) Environmental Systems Research Institute. ArcGIS desktop help. http://resources.arcgis.com/content/web-based-help. Accessed 4 Jan 2012

  • Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. Journal of Geophysical Research-Solid Earth B111(10):B10201

    Article  Google Scholar 

  • Fekete A (2009) Validation of a social vulnerability index in context to river-floods in Germany. Nat Hazards Earth Syst Sci 9(2):393–403

    Article  Google Scholar 

  • Gaillard JC (2008) Alternative paradigms of volcanic risk perception: the case of Mt. Pinatubo in the Philippines. J Volcanol Geoth Res 172:315–328

    Article  Google Scholar 

  • Gaillard JC, Dibben C (2008) Volcanic risk perception and beyond. J Volcanol Geoth Res 172:163–169

    Article  Google Scholar 

  • Gavilanes-Ruiz JC, Cuevas-Muñiz A, Varley N, Gwynne G, Stevenson J, Saucedo-Girón R, Pérez-Pérez A, Aboukhalil M, Cortés-Cortés A (2009) Exploring the factors that influence the perception of risk: the case of Volcán de Colima, Mexico. J Volcanol Geoth Res 186:238–252

    Article  Google Scholar 

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde—Zeitschrift der Gesellschaft für Erdkunde zu Berlin 134:123–146

    Google Scholar 

  • Greiving S, Fleischhauer M, Lückenkötter J (2006) A Methodology for an integrated risk assessment of spatially relevant hazards. J Environ Plann Manag 49(1):1–19

    Article  Google Scholar 

  • Hegglin E, Huggel C (2008) An integrated assessment of vulnerability to glacial hazards. Mt Res Dev 28(3):299–309

    Article  Google Scholar 

  • Hubbard BE, Sheridan MF, Carrasco-Núñez G, Díaz-Castellón R, Rodríguez SR (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geoth Res 160(1–2):99–124

    Article  Google Scholar 

  • Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazards Earth Syst Sci 5(3):375–387

    Article  Google Scholar 

  • Huggel C, Ceballos JL, Pulgarín B, Ramírez J, Thouret JC (2007) Review and reassessment of hazards owing to volcano-glacier interactions in Colombia. Ann Glaciol 45:128–136

    Article  Google Scholar 

  • Huggel C, Schneider D, Miranda PJ, Delgado Granados H, Kääb A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. J Volcanol Geoth Res 170(1–2):99–110

    Article  Google Scholar 

  • Huggel C, Khabarov N, Obersteiner M, Ramírez J (2010) Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Nat Hazards 52(2):501–518

    Article  Google Scholar 

  • INGEOMINAS (2009) Zonificación por movimientos en masa tipo flujo en la cuenca del Río Combeima – Ibagué – Tolima. Unidades geológicas superficiales. Instituto Colombiano de Geología y Minería (INGEOMINAS), Bogotá, p 45 (unpublished)

  • IPCC (2012) Special report on managing the risks of extreme events and disasters to advance climate change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Keiler M, Fuchs S, Zischg A, Stötter J (2004) The adaption of technical risk analysis on natural hazards on a regional scale. Ann Geomorphol 135:95–110

    Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4):17–28

    Article  Google Scholar 

  • Kuhlicke C, Scolobig A, Tapsell S, Steinführer A, De Marchi B (2011) Contextualizing social vulnerability: findings from case studies across Europe. Nat Hazards 58(2):789–810

    Article  Google Scholar 

  • Lavigne F, Thouret J (2003) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49(1–2):45–69

    Article  Google Scholar 

  • Liu X, Yue ZQ, Tham LG, Lee CF (2002) Empirical assessment of debris flow risk on a regional scale in Yunnan Province, Southwestern China. Environ Manag 30:249–264

    Article  Google Scholar 

  • Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. A global review. Bull Volcanol 52:1–27

    Article  Google Scholar 

  • Malczewski J (1999) Spatial multicriteria decision analysis. In: Spatial multicriteria decision making and analysis, a geographic information sciences approach. Wiley, New York, pp 11–48

  • Mora Paez H, Guarnizo Alvarez LF, Murcia Leal A (1994) Volcan Nevado del Tolima—Generalidades y consideraciones glaciologicas. INGEOMINAS, Ministerio de Minas y Energia, Bogotá Informe No. 2184

    Google Scholar 

  • Moran A, Geitner C, Wastl M, Stötter J (2003) Natural hazards assessment in the community of Ólafsfiörður, Icland. A Regional-Scale Risk Analysis. Die Erde—Zeitschrift der Gesellschaft für Erdkunde zu Berlin 134:147–162

    Google Scholar 

  • Muñoz-Salinas E, Castillo-Rodríıguez M, Manea V, Manea M, Palacios D (2009) Lahar flow simulations using LAHARZ program: application for the Popocatepetl volcano, Mexico. J Volcanol Geoth Res 182(1–2):13–22

    Article  Google Scholar 

  • Neall V (1976) Lahars as major geological hazards. Bull Eng Geol Environ 14:233–240

    Google Scholar 

  • Núñez Tello A (1996) Mapa Geologico del Departamento del Tolima—Geología, recursos geológicos y amenazas geológicas. INGEOMINAS, Ministerio de Minas y Energia, Bogotá

    Google Scholar 

  • Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2010) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680

    Article  Google Scholar 

  • Paton D, Smith L, Daly M, Johnston D (2008) Risk perception and volcanic hazard mitigation: individual and social perspectives. J Volcanol Geoth Res 172:179–188

    Article  Google Scholar 

  • Paton D, Sagala S, Okada N, Jang LJ, Burgelt PT, Gregg CE (2010) Making sense of natural hazard mitigation: personal, social and cultural influences. Environ Hazards 9(2):183–196

    Article  Google Scholar 

  • Peduzzi P, Herold HDC (2005) Mapping disastrous natural hazards using global datasets. Nat Hazards 35(2):265–289

    Article  Google Scholar 

  • Petrova E (2006) Vulnerability of Russian regions to natural risk: experience of quantitative assessment. Nat Hazards Earth Syst Sci 6:49–54

    Article  Google Scholar 

  • Pierson TC (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models. J Volcanol Geoth Res 66:283–294

    Article  Google Scholar 

  • Pierson T, Scott K (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resour Res 21(10):1511–1524

    Article  Google Scholar 

  • Pierson TC, Janda RJ, Thouret J, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geoth Res 41:17–66

    Article  Google Scholar 

  • Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas (2007) Movimientos en masa en la región andina: una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional, 4. Canada, p 432

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogram Rem Sens 57:241–262

    Article  Google Scholar 

  • Raetzo H, Lateltin O, Bollinger D, Tripet J (2002) Hazard assessment in Switzerland—codes of practice for mass movements. Bull Eng Geol Environ 61(3):263–268

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507

    Article  Google Scholar 

  • Sarmiento JO, Triana JG, Rodriguez M, Amaya LE, Galicia RA (2005a) Caracterización del centro poblado Juntas. Municipio de Ibagué, Tolima, p 117

    Google Scholar 

  • Sarmiento JO, Triana JG, Rodriguez M, Amaya LE, Galicia RA (2005b) Caracterización del centro poblado Pico de Oro—Documento Resumen. Municipio de Ibagué, Tolima, p 24

    Google Scholar 

  • Schneider D, Granados D, Huggel C, Kääb A (2008) Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Nat Hazards Earth Syst Sci 8:559–571

    Article  Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world, 3rd edn. University of California Press, California, p 568

    Google Scholar 

  • Spence RJ, Baxter PJ, Zuccaro G (2004) Building vulnerability and human casuality estimation for a pyroclastic flow: a model and its application to Vesuvius. J Volcanol Geoth Res 133:321–343

    Article  Google Scholar 

  • Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geoth Res 119(1–4):89–105

    Google Scholar 

  • Tapsell, S, McCarthy, S, Faulkner, H, Alexander, M (2010) Social vulnerability to natural hazards. CapHaz-Net WP4 Report, Flood Hazard Research Centre—FHRC, Middlesex University, London, p. 92. Available at: http://caphaz-net.org/outcomes-results/CapHaz-Net_WP4_Social-Vulnerability.pdf)

  • Thomalla F, Downing T, Spanger-Siegfried E, Han G, Rockström J (2006) Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters 30(1):39–48

    Article  Google Scholar 

  • Thouret JC (1990) Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. J Volcanol Geoth Res 41:177–201

    Article  Google Scholar 

  • Thouret JC, Laforge C (1994) Hazard appraisal and hazard-zone mapping of flooding and debris flowage in the Rio Combeima valley and Ibagué City, Tolima Department, Colombia. GeoJournal 34:407–413

    Google Scholar 

  • Thouret JC, Cantagrel JM, Robin C, Murcia A, Salinas R, Cepeda H (1995) Quaternary eruptive history and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. J Volcanol Geoth Res 66(1–4):397–426

    Article  Google Scholar 

  • Thouret JC, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geoth Res 100:479–502

    Article  Google Scholar 

  • Tingsanchali T, Karim MF (2005) Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol Process 19(10):2055–2069

    Article  Google Scholar 

  • Tran P, Shaw R, Chantry G, Norton J (2009) GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters 33:152–169

    Article  Google Scholar 

  • UNISDR (2011) Terminology of disaster risk reduction, http://www.unisdr.org/eng/library/lib-terminology-eng%20home.htm. Accessed 4 Apr 2011

  • Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256. doi:10.1016/j.enggeo.2008.03.011

    Article  Google Scholar 

  • van Westen C, van Asch T, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation—a review of principles and practice. United Nations Educational, Scientific and Cultural Organisation (UNESCO), Paris, p 63

    Google Scholar 

  • Vergara Sanchez H, Moreno Espitia M (1992) Estudio geologico—geotecnico y aptitud urbanistica de la ciudad de Ibagué, Informe 2153b. INGEOMINAS, Ministerio de Minas y Energia, Bogotá

    Google Scholar 

  • Verstappen H (1992) Volcanic hazards in Colombia and Indonesia: lahars and related phenomena. In: McCall GJH, Laming DJC, Scott SC (eds) Geohazards—natural and man made. Association of Geoscientists for International Development, London, pp 33–42

  • Voight B (1996) The management of volcano emergencies—Nevado del Ruiz. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, Berlin, pp 719–769

    Chapter  Google Scholar 

  • Weichselgartner J (2001) Disaster mitigation—the concept of vulnerability revisited. Disaster Prev Manag 10(2):85–94

    Article  Google Scholar 

  • Worni R, Huggel C, Stoffel M, Pulgarín B (2012) Challenges of modelling recent, very large lahars at Nevado del Huila Volcano, Colombia. Bull Volcanol 74(2):309–324

    Article  Google Scholar 

  • Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3(2):149–158

    Article  Google Scholar 

  • Zimmermann M, Pozzi A, Stoessel F (2005) Vademecum—hazard maps and related instruments—the Swiss system and its application abroad, capitalisation of experience. Swiss Agency for Development and Cooperation, Bern, p 34

    Google Scholar 

Download references

Acknowledgments

We would like to thank the following persons for discussions or other support: Miguel Barrios, Enrique A. Castellanos Abella, Alfonso David Duran, Juan Carlos Delgado, Wilfried Haeberli, Julia Olaya, Bernardo Pulgarín, Wolfgang Ruf, Konrad Schürmann, Demian Schneider, Jean-Claude Thouret, and Massimiliano Zappa. We furthermore highly appreciate the support of the following institutions: Swiss Agency for Development and Cooperation (SDC), Colombian Geology and Mining Institute (INGEOMINAS), Colombian National Institute of Meteorology, Hydrology and Environmental Studies (IDEAM), the Regional (Tolima) and Local (Ibagué) Disaster Preventions Agencies (CREPAD and CLOPAD), the Tolima Regional Corporation (CORTOLIMA), the Red Cross in Ibagué, the Civil Defence, and finally the OASIS programme of SPOT Image. Very careful and detailed comments and suggestions by two reviewers furthermore substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Künzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzler, M., Huggel, C. & Ramírez, J.M. A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64, 767–796 (2012). https://doi.org/10.1007/s11069-012-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0271-9

Keywords

Navigation