Elsevier

Earth and Planetary Science Letters

Volume 428, 15 October 2015, Pages 267-280
Earth and Planetary Science Letters

Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province

https://doi.org/10.1016/j.epsl.2015.06.064Get rights and content
Under a Creative Commons license
open access

Highlights

  • Analysis of seven Toarcian stratigraphic sections for Hg concentrations and Hg/TOC ratios.

  • Control analysis of an upper Jurassic section not associated with volcanism for comparison.

  • Evidence for two pulses of increased atmospheric mercury levels during the Early Toarcian.

  • Hg/TOC spikes coincide with record of Pliensbachian–Toarcian extinction and Toarcian OAE.

  • A global perturbation of volcanic mercury is inferred, but with locally derived complexities.

Abstract

The Mesozoic Era featured emplacement of a number of Large Igneous Provinces (LIPs), formed by the outpouring of millions of cubic kilometres of basaltic magma. The radiometric ages of several Mesozoic LIPs coincide with the dates of Oceanic Anoxic Events (OAEs). As a result of these coincidences, a causal link has been suggested, but never conclusively proven. This study explores the use of mercury as a possible direct link between the Karoo–Ferrar LIP and the coeval Toarcian OAE (T-OAE). Mercury is emitted to the atmosphere as a trace constituent of volcanic gas, and may be distributed globally before being deposited in sediments. Modern marine deposits show a strong linear correlation between mercury and organic-matter content. Results presented here indicate departures from such a simple linear relationship in sediments deposited during the T-OAE, and also during the Pliensbachian–Toarcian transition (an event that saw elevated benthic extinctions and carbon-cycle perturbations prior to the T-OAE). A number of depositional settings illustrate an increased mercury concentration in sediments that record one or both events, suggesting a rise in the depositional flux of this element. Complications to this relationship may arise from very organic-rich sediments potentially overprinting any Hg/TOC signal, whereas environments preserving negligible organic matter may leave no record of mercury deposition. However, the global distribution of coevally elevated Hg-rich levels suggests enhanced atmospheric mercury availability during the Early Toarcian, potentially aided by the apparent affinity of Hg for terrestrial organic matter, although the relative importance of aquatic vs terrestrial fixation of Hg in governing these enrichments remains uncertain. A perturbation in atmospheric Hg is most easily explained by enhanced volcanic output. It is suggested that extrusive igneous activity caused increased mercury flux to the Early Toarcian sedimentary realm, supporting the potential of this element as a proxy for ancient volcanism. This interpretation is consistent with a relationship between LIP formation and a perturbed carbon cycle during the Pliensbachian–Toarcian transition and T-OAE. The recording of these two distinct Hg excursions may also indicate that the Karoo–Ferrar LIP released volatiles in temporally distinct episodes, due either to multiple phases of magmatic emplacement or sporadic release of thermogenic gaseous products from intrusion of igneous material into volatile-rich lithologies.

Keywords

Oceanic Anoxic Event
Large Igneous Province
mercury
Toarcian
Karoo–Ferrar
Hg/TOC

Cited by (0)

1

Now at Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.