[1]
A. Guevara-Murua Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past. 10, 5, 1707–1707.
[2]
A new approach to assess long-­‐term lava flow hazard and risk using GIS and low-­‐cost remote sensing: the case of Mount Cameroon, West Africa: http://www.tandfonline.com/doi/pdf/10.1080/01431160802167873.
[3]
Abbott, D.A. et al. 2012. Surviving Sudden Environmental Change: Answers from Archaeology. University Press of Colorado.
[4]
Abdullah, Mikrajuddin 2012. Interpretation of Past Kingdoms Poems to Reconstruct the Physical Phenomena in the Past: Case of Great Tambora Eruption 1815. (2012).
[5]
Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events: http://libra.msra.cn/Publication/5357742/age-of-the-emeishan-flood-magmatism-and-relations-to-permian-triassic-boundary-events.
[6]
Alan Robock 2002. The Climatic Aftermath. Science. 295, 5558 (2002).
[7]
Albore Livadie, C. et al. 2019. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 499, (Jan. 2019), 205–220. DOI:https://doi.org/10.1016/j.quaint.2018.03.035.
[8]
Albore Livadie, C. et al. 2019. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 499, (Jan. 2019), 205–220. DOI:https://doi.org/10.1016/j.quaint.2018.03.035.
[9]
Alexander, K.E. et al. 2017. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event. Science Advances. 3, 1 (Jan. 2017). DOI:https://doi.org/10.1126/sciadv.1601635.
[10]
Allen, J.R.M. et al. 2000. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International. 73–74, (Nov. 2000), 91–110. DOI:https://doi.org/10.1016/S1040-6182(00)00067-7.
[11]
Allibone, R. et al. 2012. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health. 34, 2 (Apr. 2012), 155–170. DOI:https://doi.org/10.1007/s10653-010-9338-2.
[12]
Alloway, B.V. et al. 2017. Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago. Quaternary Science Reviews. 155, (Jan. 2017), 86–99. DOI:https://doi.org/10.1016/j.quascirev.2016.11.020.
[13]
Andreastuti, S. et al. 2019. Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research. 382, (Sep. 2019), 298–310. DOI:https://doi.org/10.1016/j.jvolgeores.2017.01.022.
[14]
Andrei A. Sinitsyn A Palaeolithic `Pompeii’ at Kostenki, Russia. (Research). Antiquity. 77, 295, 9–15.
[15]
Angela K Diefenbach 2015. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology. 4, 1 (2015).
[16]
Anja Schmidt: https://www.researchgate.net/profile/Anja_Schmidt.
[17]
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons 2011. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America. 108, 38 (2011), 15710–15715.
[18]
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons 2011. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America. 108, 38 (2011), 15710–15715.
[19]
Anja Schmidt, Claire S. Witham, Nicolas Theys, Nigel A. D. Richards, Thorvaldur Thordarson, Kate Szpek, Wuhu Feng, Matthew C. Hort, Alan M. Woolley, Andrew R. Jones, Alison L. Redington, Ben T. Johnson, Chris L. Hayward, Kenneth S. Carslaw 2014. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research: Atmospheres. 119, 24 (2014), 14,180-14,196. DOI:https://doi.org/10.1002/2014JD022070.
[20]
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd 2015. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres. 120, 18 (2015), 9739–9757. DOI:https://doi.org/10.1002/2015JD023638.
[21]
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd 2015. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres. 120, 18 (2015), 9739–9757. DOI:https://doi.org/10.1002/2015JD023638.
[22]
Aquila, V. et al. 2012. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. Journal of Geophysical Research: Atmospheres. 117, D6 (Mar. 2012), n/a-n/a. DOI:https://doi.org/10.1029/2011JD016968.
[23]
Arfeuille, F. et al. 2014. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past. 10, 1 (Feb. 2014), 359–375. DOI:https://doi.org/10.5194/cp-10-359-2014.
[24]
Armijos, M.T. et al. 2017. Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change. 45, (Jul. 2017), 217–226. DOI:https://doi.org/10.1016/j.gloenvcha.2017.06.002.
[25]
Athanassas, C.D. et al. 2018. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 23, 2 (Apr. 2018), 160–176. DOI:https://doi.org/10.1080/14614103.2017.1288885.
[26]
Athanassas, C.D. et al. 2018. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 23, 2 (Apr. 2018), 160–176. DOI:https://doi.org/10.1080/14614103.2017.1288885.
[27]
Bakkour, D. et al. 2015. The adaptive governance of natural disaster systems: Insights from the 2010 mount Merapi eruption in Indonesia. International Journal of Disaster Risk Reduction. 13, (Sep. 2015), 167–188. DOI:https://doi.org/10.1016/j.ijdrr.2015.05.006.
[28]
Baldini, J.U.L. et al. 2015. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Scientific Reports. 5, 1 (Dec. 2015). DOI:https://doi.org/10.1038/srep17442.
[29]
Balkanski, Y. et al. 2018. Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields. Scientific Reports. 8, 1 (Dec. 2018). DOI:https://doi.org/10.1038/s41598-018-34228-7.
[30]
Barberi, F. et al. 1990. Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. Journal of Volcanology and Geothermal Research. 42, 1–2 (Jul. 1990), 1–12. DOI:https://doi.org/10.1016/0377-0273(90)90066-O.
[31]
Barberi, F. et al. 1993. The control of lava flow during the 1991–1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research. 56, 1–2 (May 1993), 1–34. DOI:https://doi.org/10.1016/0377-0273(93)90048-V.
[32]
Barclay, J. et al. 2008. Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society, London, Special Publications. 305, 1 (Jan. 2008), 163–177. DOI:https://doi.org/10.1144/SP305.14.
[33]
Barclay, J. et al. 2019. Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science. 7, (Aug. 2019). DOI:https://doi.org/10.3389/feart.2019.00205.
[34]
Behringer, W. and Selwyn, P.E. 2019. Tambora and the year without a summer: how a volcano plunged the world into crisis. Polity.
[35]
Bercovici, A. et al. 2015. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences. 98, (Feb. 2015), 225–246. DOI:https://doi.org/10.1016/j.jseaes.2014.11.016.
[36]
Bethke, I. et al. 2017. Potential volcanic impacts on future climate variability. Nature Climate Change. 7, 11 (Nov. 2017), 799–805. DOI:https://doi.org/10.1038/nclimate3394.
[37]
Biass, S. and Bonadonna, C. 2013. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 65, 1 (Jan. 2013), 477–495. DOI:https://doi.org/10.1007/s11069-012-0378-z.
[38]
Biass, S. and Bonadonna, C. 2013. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 65, 1 (Jan. 2013), 477–495. DOI:https://doi.org/10.1007/s11069-012-0378-z.
[39]
Black, B.A. et al. 2014. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology. 42, 1 (Jan. 2014), 67–70. DOI:https://doi.org/10.1130/G34875.1.
[40]
Black, B.A. et al. 2015. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology. 43, 5 (May 2015), 411–414. DOI:https://doi.org/10.1130/G36514.1.
[41]
Black, B.A. et al. 2014. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters. 394, (May 2014), 58–69. DOI:https://doi.org/10.1016/j.epsl.2014.02.057.
[42]
Bond, D.P.G. and Grasby, S.E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology. 478, (Jul. 2017), 3–29. DOI:https://doi.org/10.1016/j.palaeo.2016.11.005.
[43]
Bottema, S. and Sarpaki, A. 2003. Environmental change in Crete: a 9000-year record of Holocene vegetation                history and the effect of the Santorini eruption. The Holocene. 13, 5 (Jul. 2003), 733–749. DOI:https://doi.org/10.1191/0959683603hl659rp.
[44]
Brá 2012. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Climate of the Past. 12, 6 (2012).
[45]
Brázdil, R. et al. 2010. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology. 100, 1–2 (Mar. 2010), 163–189. DOI:https://doi.org/10.1007/s00704-009-0170-5.
[46]
Brian J. Soden Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. (Reports). Science. 296, 5568, 727–731.
[47]
Brian Zambri, Allegra N. LeGrande, Alan Robock, Joanna Slawinska 2017. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres. 122, 15 (2017), 7971–7989. DOI:https://doi.org/10.1002/2017JD026728.
[48]
Buizert, C. et al. 2018. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature. 563, 7733 (Nov. 2018), 681–685. DOI:https://doi.org/10.1038/s41586-018-0727-5.
[49]
Campbell, B.M.S. 2017. GLOBAL CLIMATES, THE 1257 MEGA-ERUPTION OF SAMALAS VOLCANO, INDONESIA, AND THE ENGLISH FOOD CRISIS OF 1258. Transactions of the Royal Historical Society. 27, (Dec. 2017), 87–121. DOI:https://doi.org/10.1017/S0080440117000056.
[50]
Cao, Shuji 2012. Mt. Tambora, Climatic Changes, and China’s Decline in the Nineteenth Century. Journal of World History. 23, 3 (2012), 587–607.
[51]
Cashman, K.V. and Giordano, G. 2008. Volcanoes and human history. Journal of Volcanology and Geothermal Research. 176, 3 (Oct. 2008), 325–329. DOI:https://doi.org/10.1016/j.jvolgeores.2008.01.036.
[52]
Chester, D.K. et al. 2012. Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning. Journal of Volcanology and Geothermal Research. 225–226, (May 2012), 65–80. DOI:https://doi.org/10.1016/j.jvolgeores.2012.02.017.
[53]
Chester, D.K. et al. 2008. The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. Journal of Volcanology and Geothermal Research. 172, 3–4 (May 2008), 216–228. DOI:https://doi.org/10.1016/j.jvolgeores.2007.12.009.
[54]
Chester, D.K. et al. 2002. Volcanic hazard assessment in western Europe. Journal of Volcanology and Geothermal Research. 115, 3–4 (Jun. 2002), 411–435. DOI:https://doi.org/10.1016/S0377-0273(02)00210-X.
[55]
Chester, D.K. 1994. Volcanoes and society. E. Arnold.
[56]
Clarkson, Chris 2014. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption.(Report). Quaternary International. 258, (2014).
[57]
Cole-Dai, J. et al. 2009. Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters. 36, 22 (Nov. 2009). DOI:https://doi.org/10.1029/2009GL040882.
[58]
Connor, C.B. 2003. Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrière Hills Volcano, Montserrat. Geophysical Research Letters. 30, 13 (2003). DOI:https://doi.org/10.1029/2003GL017384.
[59]
Convertito, V. and Zollo, A. 2011. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology. 73, 6 (Aug. 2011), 767–783. DOI:https://doi.org/10.1007/s00445-011-0455-2.
[60]
Cooper, C.L. et al. 2018. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews. 177, (Feb. 2018), 238–247. DOI:https://doi.org/10.1016/j.earscirev.2017.11.009.
[61]
Costa, A. et al. 2012. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters. 39, 10 (May 2012), n/a-n/a. DOI:https://doi.org/10.1029/2012GL051605.
[62]
Countries | UNITAR: https://unitar.org/maps/countries.
[63]
Courtillot, V. et al. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters. 166, 3–4 (Mar. 1999), 177–195. DOI:https://doi.org/10.1016/S0012-821X(98)00282-9.
[64]
Cousins, C.R. and Crawford, I.A. 2011. Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology. 11, 7 (Sep. 2011), 695–710. DOI:https://doi.org/10.1089/ast.2010.0550.
[65]
Cui, Y. and Kump, L.R. 2015. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews. 149, (Oct. 2015), 5–22. DOI:https://doi.org/10.1016/j.earscirev.2014.04.007.
[66]
Darcy E. Ogden and Norman H. Sleep 2012. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 109, 1 (2012).
[67]
Darcy E. Ogden and Norman H. Sleep 2012. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 109, 1 (2012).
[68]
D’Arrigo, R. et al. 2011. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophysical Research Letters. 38, 5 (Mar. 2011), n/a-n/a. DOI:https://doi.org/10.1029/2011GL046696.
[69]
D’Arrigo, R. et al. 2013. Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres. 118, 16 (Aug. 2013), 9000–9010. DOI:https://doi.org/10.1002/jgrd.50692.
[70]
De la Cruz-Reyna, S. and Tilling, R.I. 2008. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system. Journal of Volcanology and Geothermal Research. 170, 1–2 (Feb. 2008), 121–134. DOI:https://doi.org/10.1016/j.jvolgeores.2007.09.002.
[71]
Decker, R.W. and Decker, B. 1998. Volcanoes. W. H. Freeman.
[72]
Delos Reyes, P.J. et al. 2018. A synthesis and review of historical eruptions at Taal Volcano, Southern Luzon, Philippines. Earth-Science Reviews. 177, (Feb. 2018), 565–588. DOI:https://doi.org/10.1016/j.earscirev.2017.11.014.
[73]
Di Vito, M.A. et al. 2019. Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quaternary International. 499, (Jan. 2019), 231–244. DOI:https://doi.org/10.1016/j.quaint.2018.03.021.
[74]
Dibben, C. and Chester, D.K. 1999. Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. Journal of Volcanology and Geothermal Research. 92, 1–2 (Sep. 1999), 133–150. DOI:https://doi.org/10.1016/S0377-0273(99)00072-4.
[75]
Dogar, M.M. et al. 2017. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. Journal of Geophysical Research: Atmospheres. 122, 15 (Aug. 2017), 7922–7948. DOI:https://doi.org/10.1002/2017JD026783.
[76]
Driessen, J. 2019. The Santorini eruption. An archaeological investigation of its distal impacts on Minoan Crete. Quaternary International. 499, (Jan. 2019), 195–204. DOI:https://doi.org/10.1016/j.quaint.2018.04.019.
[77]
Dunbar, N.W. et al. 2017. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports. 7, 1 (Dec. 2017). DOI:https://doi.org/10.1038/s41598-017-11758-0.
[78]
Effects of volcanic air pollution on health: https://www.researchgate.net/publication/12118448_Effects_of_volcanic_air_pollution_on_health.
[79]
Ernst, R.E. et al. 2005. Frontiers in large igneous province research. Lithos. 79, 3–4 (Feb. 2005), 271–297. DOI:https://doi.org/10.1016/j.lithos.2004.09.004.
[80]
Ernst, R.E. and Youbi, N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 478, (Jul. 2017), 30–52. DOI:https://doi.org/10.1016/j.palaeo.2017.03.014.
[81]
Ernst, R.E. and Youbi, N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 478, (Jul. 2017), 30–52. DOI:https://doi.org/10.1016/j.palaeo.2017.03.014.
[82]
Fahrenkamp-Uppenbrink, J. 2019. Preparing for the next supereruption. Science. 363, 6433 (Mar. 2019), 1296.16-1298. DOI:https://doi.org/10.1126/science.363.6433.1296-p.
[83]
Fantasia, A. et al. 2016. Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology. 441, (Jan. 2016), 165–180. DOI:https://doi.org/10.1016/j.palaeo.2015.06.032.
[84]
Fearnley, C.J. et al. eds. 2018. Observing the Volcano World: Volcano Crisis Communication. Springer International Publishing.
[85]
Fearnley, C.J. et al. 2012. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bulletin of Volcanology. 74, 9 (Nov. 2012), 2023–2036. DOI:https://doi.org/10.1007/s00445-012-0645-6.
[86]
Fedele, F.G. et al. 2002. Ecosystem Impact of the Campanian Ignimbrite Eruption in Late Pleistocene Europe. Quaternary Research. 57, 3 (May 2002), 420–424. DOI:https://doi.org/10.1006/qres.2002.2331.
[87]
Fedele, F.G. et al. 2008. Timescales and cultural process at 40,000BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution. 55, 5 (Nov. 2008), 834–857. DOI:https://doi.org/10.1016/j.jhevol.2008.08.012.
[88]
Fei, J. and Zhou, J. 2006. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 76, 3–4 (Jun. 2006), 443–457. DOI:https://doi.org/10.1007/s10584-005-9012-3.
[89]
Fei, J. and Zhou, J. 2006. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 76, 3–4 (Jun. 2006), 443–457. DOI:https://doi.org/10.1007/s10584-005-9012-3.
[90]
Few, R. et al. 2017. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 80, (Mar. 2017), 72–81. DOI:https://doi.org/10.1016/j.geoforum.2017.01.006.
[91]
Few, R. et al. 2017. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 80, (Mar. 2017), 72–81. DOI:https://doi.org/10.1016/j.geoforum.2017.01.006.
[92]
Firth, C.R. and McGuire, B. 1999. Volcanoes in the Quaternary. Geological Society.
[93]
Fitzsimmons, K.E. et al. 2013. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE. 8, 6 (Jun. 2013). DOI:https://doi.org/10.1371/journal.pone.0065839.
[94]
Flückiger, S. et al. 2017. Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios. Environmental Research Letters. 12, 7 (Jul. 2017). DOI:https://doi.org/10.1088/1748-9326/aa7246.
[95]
Francis, P. and Oppenheimer, C. 2004. Volcanoes - 10 copies in the library. Oxford University Press.
[96]
Franck Lavigne, Jean-Philippe Degeai, Jean-Christophe Komorowski, Sébastien Guillet, Vincent Robert, Pierre Lahitte, Clive Oppenheimer, Markus Stoffel, Céline M. Vidal, Surono, Indyo Pratomo, Patrick Wassmer, Irka Hajdas, Danang Sri Hadmoko and Edouard de Belizal 2013. Source of the great A.D. 1257 mystery eruption unveiled,                            Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences of the United States of America. 110, 42 (2013).
[97]
Fraser, N.C. and Sues, H.-D. 2010. The beginning of the ‘Age of Dinosaurs’: a brief overview of terrestrial biotic changes during the Triassic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 101, 3–4 (Sep. 2010), 189–200. DOI:https://doi.org/10.1017/S1755691011020019.
[98]
Gale General OneFile - Document - Air pollution ‘causes more deaths than smoking’: https://go.gale.com/ps/i.do?&id=GALE|A578128317&v=2.1&u=uniaber&it=r&p=ITOF&sw=w.
[99]
Gale General OneFile - Document - First eyewitness accounts of mystery volcanic eruption: https://go.gale.com/ps/i.do?&id=GALE|A383506238&v=2.1&u=uniaber&it=r&p=ITOF&sw=w.
[100]
Gao, C. et al. 2017. Climatic aftermath of the 1815 Tambora eruption in China. Journal of Meteorological Research. 31, 1 (Feb. 2017), 28–38. DOI:https://doi.org/10.1007/s13351-017-6091-9.
[101]
Garcia Garriga, J. et al. 2012. Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory. 25, 2 (Jul. 2012), 81–121. DOI:https://doi.org/10.1007/s10963-012-9057-y.
[102]
Gertisser, R. 2012. The great 1815 eruption of Tambora and future risks from large-scale volcanism.(Report). Geology Today. 31, 4 (2012).
[103]
Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo and Michael F. Sheridan 2006. The Avellino 3780-yr-B.P. Catastrophe as a Worst-Case Scenario for a Future Eruption at Vesuvius. Proceedings of the National Academy of Sciences of the United States of America. 103, 12 (2006).
[104]
GLIKSON, A. 2005. Asteroid/comet impact clusters, flood basalts and mass extinctions: Significance of isotopic age overlaps. Earth and Planetary Science Letters. 236, 3–4 (Aug. 2005), 933–937. DOI:https://doi.org/10.1016/j.epsl.2005.05.007.
[105]
Grasby, S.E. et al. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience. 4, 2 (Feb. 2011), 104–107. DOI:https://doi.org/10.1038/ngeo1069.
[106]
Grasby, S.E. et al. 2019. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews. 196, (Sep. 2019). DOI:https://doi.org/10.1016/j.earscirev.2019.102880.
[107]
Gräslund, BoPrice, Neil Twighlight of the gods? The dust veil event of AD 536 in critical perspective. 86, 2, 428–443.
[108]
Grattan, J. 2006. Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization. Quaternary International. 151, 1 (Jul. 2006), 10–18. DOI:https://doi.org/10.1016/j.quaint.2006.01.019.
[109]
Grattan, J. et al. 2007. Living under the shadow: cultural impacts of volcanic eruptions. Left Coast Press.
[110]
Grattan, J. et al. 2007. Living under the shadow: cultural impacts of volcanic eruptions. Left Coast Press.
[111]
Grattan, J. 2005. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos. 79, 3–4 (Feb. 2005), 343–353. DOI:https://doi.org/10.1016/j.lithos.2004.09.006.
[112]
Grattan, J.P. and Pyatt, F.B. 1994. Acid damage to vegetation following the Laki fissure eruption in 1783 — an historical review. Science of The Total Environment. 151, 3 (Jul. 1994), 241–247. DOI:https://doi.org/10.1016/0048-9697(94)90473-1.
[113]
Gualda, G.A.R. and Sutton, S.R. 2016. The Year Leading to a Supereruption. PLOS ONE. 11, 7 (Jul. 2016). DOI:https://doi.org/10.1371/journal.pone.0159200.
[114]
Guillet, S 2017. Climate response to the 1257 Samalas eruption revealed 1 by proxy records. (2017).
[115]
Gurioli, L. et al. 2010. Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bulletin of Volcanology. 72, 9 (Nov. 2010), 1021–1038. DOI:https://doi.org/10.1007/s00445-010-0379-2.
[116]
H. Tuffen and R. Betts 2010. Volcanism and climate: chicken and egg (or vice versa)? Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 368, 1919 (2010), 2585–2588.
[117]
Haraldur Sigurdsson, Stanford Cashdollar and Stephen R. J. Sparks 1982. The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology. 86, 1 (1982), 39–51.
[118]
Harington, C.R. 1992. The Year without a summer?: world climate in 1816. Canadian Museum of Nature.
[119]
Harris, B. 2008. The potential impact of super-volcanic eruptions on the Earth’s atmosphere. Weather. 63, 8 (Aug. 2008), 221–225. DOI:https://doi.org/10.1002/wea.263.
[120]
Hartmann, W.K. et al. 1999. Evidence for recent volcanism on Mars from crater counts. Nature. 397, 6720 (Feb. 1999), 586–589. DOI:https://doi.org/10.1038/17545.
[121]
Haslam, M. et al. 2010. The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3. Journal of Archaeological Science. 37, 12 (Dec. 2010), 3370–3384. DOI:https://doi.org/10.1016/j.jas.2010.07.034.
[122]
Haslam, M. and Petraglia, M. 2010. Comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M.A.J. Williams, S.H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P.R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 296, 1–2 (Oct. 2010), 199–203. DOI:https://doi.org/10.1016/j.palaeo.2010.03.057.
[123]
Haynes, K. et al. 2008. The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology. 70, 5 (Mar. 2008), 605–621. DOI:https://doi.org/10.1007/s00445-007-0156-z.
[124]
Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006: http://pubs.er.usgs.gov/publication/pp175024.
[125]
Head, J.W. et al. 1992. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research. 97, E8 (1992). DOI:https://doi.org/10.1029/92JE01273.
[126]
Historical unrest at large calderas of the world: http://pubs.er.usgs.gov/publication/b1855.
[127]
Hizbaron, D.R. et al. 2018. Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Applied Geography. 97, (Aug. 2018), 212–227. DOI:https://doi.org/10.1016/j.apgeog.2018.06.012.
[128]
Hodel, F. et al. 2018. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications. 9, 1 (Dec. 2018). DOI:https://doi.org/10.1038/s41467-018-03890-w.
[129]
Hoffecker, J.F. et al. 2008. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution. 55, 5 (Nov. 2008), 858–870. DOI:https://doi.org/10.1016/j.jhevol.2008.08.018.
[130]
Höskuldsson, Á. et al. 2007. The millennium eruption of Hekla in February 2000. Bulletin of Volcanology. 70, 2 (Nov. 2007), 169–182. DOI:https://doi.org/10.1007/s00445-007-0128-3.
[131]
Huang, Cy 2014. Cooling of the South China Sea by the Toba eruption and correlation with other climate proxies similar to 71,000 years ago. Geophysical Research Letters. 28, 20 (2014), 3915–3918.
[132]
Hubbard, Z. 2019. Paintings in the Year Without a Summer. Philologia. 11, 1 (Apr. 2019). DOI:https://doi.org/10.21061/ph.173.
[133]
J. Lelieveld The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 525, 7569, 367–385.
[134]
J. U. L. Baldini 2018. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past. 14, (2018), 969–990.
[135]
Jacoby, Gc 1999. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews. 18, 12 (1999), 1365–1371.
[136]
Joanna  Slawinska 2018. Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. (Feb. 2018). DOI:https://doi.org/JCLI-D-16-0498.
[137]
João Zilhão 2006. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology: Issues, News, and Reviews. 15, 5 (2006), 183–195. DOI:https://doi.org/10.1002/evan.20110.
[138]
John Lowe, Nick Barton, Simon Blockley, Christopher Bronk Ramsey, Victoria L. Cullen, William Davies, Clive Gamble, Katharine Grant, Mark Hardiman, Rupert Housley, Christine S. Lane, Sharen Lee, Mark Lewis, Alison MacLeod, Martin Menzies, Wolfgang Müller, Mark Pollard, Catherine Price, Andrew P. Roberts, Eelco J. Rohling, Chris Satow, Victoria C. Smith, Chris B. Stringer, Emma L. Tomlinson, Dustin White, Paul Albert, Ilenia Arienzo, Graeme Barker, Dušan Borić, Antonio Carandente, Lucia Civetta, Catherine Ferrier, Jean-Luc Guadelli, Panagiotis Karkanas, Margarita Koumouzelis, Ulrich C. Müller, Giovanni Orsi, Jörg Pross, Mauro Rosi, Ljiljiana Shalamanov-Korobar, Nikolay Sirakov and Polychronis C. Tzedakis 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America. 109, 34 (2012).
[139]
Jón Steingrímsson 1998. Fires of the earth: the Laki eruption, 1783-1784. Nordic Volcanological Institute.
[140]
Jón Steingrímsson 1998. Fires of the earth: the Laki eruption, 1783-1784. Nordic Volcanological Institute.
[141]
Jona Schellekens Irish famines and English mortality in the eighteenth century. The Journal of Interdisciplinary History. 27, 1, 29–43.
[142]
Jonathan Stone 2014. Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology. 3, 1 (2014).
[143]
Jones, S.C. 2010. Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quaternary Research. 73, 2 (Mar. 2010), 336–350. DOI:https://doi.org/10.1016/j.yqres.2009.11.005.
[144]
JUN SHEN, YONG LEI, THOMAS J. ALGEO, QINGLAI FENG, THOMAS SERVAIS, JIANXIN YU and LIAN ZHOU 2013. VOLCANIC EFFECTS ON MICROPLANKTON DURING THE PERMIAN-TRIASSIC TRANSITION (SHANGSI AND XINMIN, SOUTH CHINA). PALAIOS. 28, 7 (2013).
[145]
Kaltenegger, L. et al. 2010. DETECTING VOLCANISM ON EXTRASOLAR PLANETS. The Astronomical Journal. 140, 5 (Nov. 2010), 1370–1380. DOI:https://doi.org/10.1088/0004-6256/140/5/1370.
[146]
Kandlbauer, J. et al. 2013. Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research: Atmospheres. 118, 22 (Nov. 2013), 12,497-12,507. DOI:https://doi.org/10.1002/2013JD019767.
[147]
Kandlbauer, J. and Sparks, R.S.J. 2014. New estimates of the 1815 Tambora eruption volume. Journal of Volcanology and Geothermal Research. 286, (Oct. 2014), 93–100. DOI:https://doi.org/10.1016/j.jvolgeores.2014.08.020.
[148]
Kathryn E Fitzsimmons 2013. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE. 8, 6 (2013).
[149]
Keller, G. et al. 2011. Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India. 78, 5 (Nov. 2011), 399–428. DOI:https://doi.org/10.1007/s12594-011-0107-3.
[150]
Keller, G. et al. 2009. Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences. 34, 5 (Nov. 2009), 709–728. DOI:https://doi.org/10.1007/s12038-009-0059-6.
[151]
Kent, A. 2015. RESEARCH FOCUS: Tackling supervolcanoes: Big and fast? Geology. 43, 11 (Nov. 2015), 1039–1040. DOI:https://doi.org/10.1130/focus112015.1.
[152]
Knappett, CarlRivers, RayEvans, Tim The Theran eruption and Minoan Palatial Collapse. 85, 9, 1008–1023.
[153]
Künzler, M. et al. 2012. A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards. 64, 1 (Oct. 2012), 767–796. DOI:https://doi.org/10.1007/s11069-012-0271-9.
[154]
La catastrophe: Mount Pelée and the destruction of Saint-Pierre, Martinique - Alwyn Scarth - Google Books: http://books.google.co.uk/books/about/La_catastrophe.html?id=SxROAQAAIAAJ&redir_esc=y.
[155]
Lanciki, A. et al. 2012. Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters. 39, 1 (Jan. 2012), n/a-n/a. DOI:https://doi.org/10.1029/2011GL050075.
[156]
Lane, Christine S. 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America. 110, 20 (2013), 8025–8029.
[157]
Lane, C.S. et al. 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences. 110, 20 (May 2013), 8025–8029. DOI:https://doi.org/10.1073/pnas.1301474110.
[158]
Lawrence M. E. Percival, Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather and Jessica H. Whiteside 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 114, 30 (2017).
[159]
Leonard, G.S. et al. 2008. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research. 172, 3–4 (May 2008), 199–215. DOI:https://doi.org/10.1016/j.jvolgeores.2007.12.008.
[160]
Lindström, S. et al. 2019. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances. 5, 10 (Oct. 2019). DOI:https://doi.org/10.1126/sciadv.aaw4018.
[161]
London’s volcanic winter - Current Archaeology: https://www.archaeology.co.uk/articles/features/londons-volcanic-winter.htm.
[162]
Longo, B.M. et al. 2008. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health. 122, 8 (Aug. 2008), 809–820. DOI:https://doi.org/10.1016/j.puhe.2007.09.017.
[163]
Lopes, R.M.C. et al. Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. What is a volcano?. Geological Society of America. 11–30.
[164]
Lorenz, S. 2012. Exploring the climate response to the Tambora in 1815 and the 1809 tropical eruption. Quaternary International. 279–280, (Nov. 2012). DOI:https://doi.org/10.1016/j.quaint.2012.08.770.
[165]
Louys, Julien 2014. Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quaternary International. 258, (2014).
[166]
M. Damaschke,R. Sulpizio,G. Zanchetta,B. Wagner,N. Nowaczyk,J. Rethemeyer 2013. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate of the Past. 9, 1 (2013), 267–267.
[167]
Maltman, C. et al. 2016. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLOS ONE. 11, 2 (Feb. 2016). DOI:https://doi.org/10.1371/journal.pone.0149812.
[168]
Mannella, G. et al. 2019. Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews. 210, (Apr. 2019), 190–210. DOI:https://doi.org/10.1016/j.quascirev.2019.02.032.
[169]
Manning, J.G. et al. 2017. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 8, 1 (Dec. 2017). DOI:https://doi.org/10.1038/s41467-017-00957-y.
[170]
Manning, J.G. et al. 2017. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 8, 1 (Dec. 2017). DOI:https://doi.org/10.1038/s41467-017-00957-y.
[171]
Marshall, Lauren Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics. 18, 3, 2307–2328. DOI:https://doi.org/https://doi.org/10.5194/acp-18-2307-2018.
[172]
Martí, J. and Ernst, G. 2005. Volcanoes and the environment. Cambridge University Press.
[173]
Mastin, L.G. et al. 2014. Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems. 15, 8 (Aug. 2014), 3459–3475. DOI:https://doi.org/10.1002/2014GC005469.
[174]
Mastrolorenzo, G. et al. 2002. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. Journal of Volcanology and Geothermal Research. 113, 1–2 (Mar. 2002), 19–36. DOI:https://doi.org/10.1016/S0377-0273(01)00248-7.
[175]
Mastrolorenzo, G. and Pappalardo, L. 2010. Hazard assessment of explosive volcanism at Somma-Vesuvius. Journal of Geophysical Research. 115, B12 (Dec. 2010). DOI:https://doi.org/10.1029/2009JB006871.
[176]
Matthew Toohey Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data. 9, 2, 809–809.
[177]
McConnell, J.R. et al. 2017. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences. 114, 38 (Sep. 2017), 10035–10040. DOI:https://doi.org/10.1073/pnas.1705595114.
[178]
McCoy, F. and Heiken, G. 2000. Volcanic hazards and disasters in human antiquity. Geological Society of America.
[179]
McGuire, B. 2000. The archaeology of geological catastrophes. Geological Society.
[180]
Meehl, G.A. et al. 2015. Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters. 42, 24 (Dec. 2015), 10,840-10,846. DOI:https://doi.org/10.1002/2015GL066608.
[181]
Mellars, P. 2004. Neanderthals and the modern human colonization of Europe. Nature. 432, 7016 (Nov. 2004), 461–465. DOI:https://doi.org/10.1038/nature03103.
[182]
Mellars, P. 1999. The Neanderthal Problem Continued. Current Anthropology. 40, 3 (Jun. 1999), 341–364. DOI:https://doi.org/10.1086/200024.
[183]
Michael Petraglia, Ravi Korisettar, Nicole Boivin, Christopher Clarkson, Peter Ditchfield, Sacha Jones, Jinu Koshy, Marta Mirazón Lahr, Clive Oppenheimer, David Pyle, Richard Roberts, Jean-Luc Schwenninger, Lee Arnold and Kevin White 2007. Middle Paleolithic Assemblages from the Indian Subcontinent before and after the Toba Super-Eruption. Science. 317, 5834 (2007).
[184]
Michael R. Rampino and Stephen Self 1955. Bottleneck in Human Evolution and the Toba Eruption. Science. 262, 5142 (1955).
[185]
Michael Staubwasser 2018. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences. 115, 37 (Sep. 2018), 9116–9121. DOI:https://doi.org/10.1073/pnas.1808647115.
[186]
Milia, A. et al. 2007. The dark nature of Somma-Vesuvius volcano: Evidence from the ∼3.5ka B.P. Avellino eruption. Quaternary International. 173–174, (Oct. 2007), 57–66. DOI:https://doi.org/10.1016/j.quaint.2007.03.001.
[187]
Miller, C.F. and Wark, D.A. 2008. SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS. Elements. 4, 1 (Feb. 2008), 11–15. DOI:https://doi.org/10.2113/GSELEMENTS.4.1.11.
[188]
Miller, G.H. et al. 2012. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters. 39, 2 (Jan. 2012), n/a-n/a. DOI:https://doi.org/10.1029/2011GL050168.
[189]
Monaghan, J.J. et al. 1994. Volcanoes, Tsunamis and the demise of the Minoans. Physica D: Nonlinear Phenomena. 77, 1–3 (Oct. 1994), 217–228. DOI:https://doi.org/10.1016/0167-2789(94)90135-X.
[190]
Muhammad Mubashar Dogar 2020. Ocean Sensitivity to Periodic and Constant Volcanism. Scientific Reports. 10, 1 (2020), 1–15.
[191]
Mystery eruption traced to dangerous Italian volcano : Research Highlights: https://www.nature.com/articles/d41586-019-01462-6.
[192]
Negi, J.G. et al. 1993. A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors. 76, 3–4 (Mar. 1993), 189–197. DOI:https://doi.org/10.1016/0031-9201(93)90011-W.
[193]
Newhall, C. and Hoblitt, R. 2002. Constructing event trees for volcanic crises. Bulletin of Volcanology. 64, 1 (Mar. 2002), 3–20. DOI:https://doi.org/10.1007/s004450100173.
[194]
Nicholas J. G. Pearce Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP Youngest Toba eruption. Current Science. 889–893.
[195]
Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783: https://www.researchgate.net/publication/249868764_Non-climatic_factors_and_the_environmental_impact_of_volcanic_volatiles_Implications_of_the_Laki_fissure_eruption_of_AD_1783.
[196]
Olsson, J. et al. 2013. Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta. 123, (Dec. 2013), 134–149. DOI:https://doi.org/10.1016/j.gca.2013.09.009.
[197]
Oman, L. et al. 2006. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters. 33, 18 (Sep. 2006), n/a-n/a. DOI:https://doi.org/10.1029/2006GL027665.
[198]
Oppenheimer, C. 2003. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography. 27, 2 (Jun. 2003), 230–259. DOI:https://doi.org/10.1191/0309133303pp379ra.
[199]
Oppenheimer, C. 2011. Eruptions that shook the world. Cambridge University Press.
[200]
Oppenheimer, C. 2002. Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP? Quaternary Science Reviews. 21, 14–15 (Aug. 2002), 1593–1609. DOI:https://doi.org/10.1016/S0277-3791(01)00154-8.
[201]
Oppenheimer, S. 2012. A single southern exit of modern humans from Africa: Before or after Toba? Quaternary International. 258, (May 2012), 88–99. DOI:https://doi.org/10.1016/j.quaint.2011.07.049.
[202]
Panagiotakopulu, E. et al. 2013. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften. 100, 7 (Jul. 2013), 683–689. DOI:https://doi.org/10.1007/s00114-013-1068-8.
[203]
Paolo Cherubini The olive-branch dating of the Santorini eruption. Antiquity. 88, 339, 267–274.
[204]
Papale, P. 2018. Global time-size distribution of volcanic eruptions on Earth. Scientific Reports. 8, 1 (Dec. 2018). DOI:https://doi.org/10.1038/s41598-018-25286-y.
[205]
Papale, P. and Marzocchi, W. 2019. Volcanic threats to global society. Science. 363, 6433 (Mar. 2019), 1275–1276.
[206]
Papale, P. and Shroder, J.F. eds. 2014. Volcanic hazards, risks and disasters. Elsevier.
[207]
Parnell, J. 2005. Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. International Journal of Astrobiology. 4, 3–4 (Oct. 2005), 175–186. DOI:https://doi.org/10.1017/S1473550405002715.
[208]
Paul E. Olsen Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science. 284, 5414, 604–605.
[209]
Paul Mellars The earliest modern humans in Europe: the reanalysis of findings from two archaeological sites calls for a reassessment of when modern humans settled in Europe, and of Neanderthal cultural achievements. Nature. 479, 7374, 483–486.
[210]
Paul Mellars and Jennifer C. French 2011. Tenfold Population Increase in Western Europe at the Neandertal—to—Modern Human Transition. Science. 333, 6042 (2011).
[211]
Paul Mellars, Kevin C. Gori, Martin Carr, Pedro A. Soares and Martin B. Richards 2013. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America. 110, 26 (2013).
[212]
Pearson, C.L. et al. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances. 4, 8 (Aug. 2018). DOI:https://doi.org/10.1126/sciadv.aar8241.
[213]
Percival, L.M.E. et al. 2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters. 428, (Oct. 2015), 267–280. DOI:https://doi.org/10.1016/j.epsl.2015.06.064.
[214]
Percival, L.M.E. et al. 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences. 114, 30 (Jul. 2017), 7929–7934. DOI:https://doi.org/10.1073/pnas.1705378114.
[215]
Periáñez, R. and Abril, J.M. 2014. Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. Journal of Marine Systems. 139, (Nov. 2014), 91–102. DOI:https://doi.org/10.1016/j.jmarsys.2014.05.016.
[216]
Petraglia , Michael D. 2014. Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary international. 258, (2014), 119–134.
[217]
Petraglia, M.D. et al. 2012. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International. 258, (May 2012), 119–134. DOI:https://doi.org/10.1016/j.quaint.2011.07.042.
[218]
Pfister, C. et al. 1998. Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). The Holocene. 8, 5 (Sep. 1998), 535–552. DOI:https://doi.org/10.1191/095968398675289943.
[219]
Pistolesi, M. et al. 2013. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology. 75, 3 (Mar. 2013). DOI:https://doi.org/10.1007/s00445-013-0698-1.
[220]
Pistolesi, M. et al. 2014. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 207, (Feb. 2014), 51–63. DOI:https://doi.org/10.1016/j.geomorph.2013.10.026.
[221]
Pistolesi, M. et al. 2014. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 207, (Feb. 2014), 51–63. DOI:https://doi.org/10.1016/j.geomorph.2013.10.026.
[222]
Pollution and paradigms: lessons from Icelandic volcanism for - Pollution and paradigms1.pdf: http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution%20and%20paradigms1.pdf?sequence=1.
[223]
Ponomarenko, A.G. 2016. Insects during the time around the Permian—Triassic crisis. Paleontological Journal. 50, 2 (Mar. 2016), 174–186. DOI:https://doi.org/10.1134/S0031030116020052.
[224]
Pyle, D.M. et al. 2006. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews. 25, 21–22 (Nov. 2006), 2713–2728. DOI:https://doi.org/10.1016/j.quascirev.2006.06.008.
[225]
Rampino, M. 2002. Supereruptions as a Threat to Civilizations on Earth-like Planets. Icarus. 156, 2 (Apr. 2002), 562–569. DOI:https://doi.org/10.1006/icar.2001.6808.
[226]
Rampino, M R 2014. Bottleneck in human evolution and the Toba eruption. Science (New York. 262, 5142 (2014).
[227]
Rampino, M.R. 2020. Relationship between impact-crater size and severity of related extinction episodes. Earth-Science Reviews. 201, (Feb. 2020). DOI:https://doi.org/10.1016/j.earscirev.2019.102990.
[228]
Rampino, M.R. et al. 1988. Volcanic Winters. Annual Review of Earth and Planetary Sciences. 16, 1 (May 1988), 73–99. DOI:https://doi.org/10.1146/annurev.ea.16.050188.000445.
[229]
Rampino, M.R. and Ambrose, S.H. 2000. Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash. Special Paper 345: Volcanic Hazards and Disasters in Human Antiquity. Geological Society of America. 71–82.
[230]
Rampino, M.R. and Caldeira, K. 2018. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. International Journal of Earth Sciences. 107, 2 (Mar. 2018), 601–606. DOI:https://doi.org/10.1007/s00531-017-1513-6.
[231]
Reigstad, L.J. et al. 2011. Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology. 11, 7 (Sep. 2011), 665–678. DOI:https://doi.org/10.1089/ast.2010.0551.
[232]
Richard Stone 2014. BACK FROM THE DEAD: The once-moribund idea that volcanism helped kill off the dinosaurs gains new credibility. Science. 346, 6215 (2014).
[233]
Riede, F. 2019. Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quaternary International. 499, (Jan. 2019), 266–277. DOI:https://doi.org/10.1016/j.quaint.2018.01.027.
[234]
Riede, F. 2014. Towards a science of past disasters. Natural Hazards. 71, 1 (Mar. 2014), 335–362. DOI:https://doi.org/10.1007/s11069-013-0913-6.
[235]
Roberts, R.G. et al. 2013. Toba supereruption: Age and impact on East African ecosystems. Proceedings of the National Academy of Sciences. 110, 33 (Aug. 2013), E3047–E3047. DOI:https://doi.org/10.1073/pnas.1308550110.
[236]
Robock, A. 2004. Climatic impact of volcanic emissions. The State of the Planet: Frontiers and Challenges in Geophysics. American Geophysical Union. 125–134.
[237]
Robock, A. et al. 2009. Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? Journal of Geophysical Research. 114, D10 (May 2009). DOI:https://doi.org/10.1029/2008JD011652.
[238]
Robock, A. 2000. Volcanic eruptions and climate. Reviews of Geophysics. 38, 2 (May 2000), 191–219. DOI:https://doi.org/10.1029/1998RG000054.
[239]
Rosi, M. and Hyams, J. 2003. Volcanoes. Firefly Books.
[240]
Rössler, O. and Brönnimann, S. 2018. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment. 627, (Jun. 2018), 1218–1227. DOI:https://doi.org/10.1016/j.scitotenv.2018.01.254.
[241]
Rothery, D.A. 2010. Volcanoes, earthquakes and tsunamis. Teach Yourself.
[242]
Ryan C. Bay, Nathan Bramall and P. Buford Price 2004. Bipolar Correlation of Volcanism with Millennial Climate Change. Proceedings of the National Academy of Sciences of the United States of America. 101, 17 (2004).
[243]
Sadler, J.P. and Grattan, J.P. 1999. Volcanoes as agents of past environmental change. Global and Planetary Change. 21, 1–3 (Jul. 1999), 181–196. DOI:https://doi.org/10.1016/S0921-8181(99)00014-4.
[244]
Sandri, L. et al. 2014. Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Volcanology. 76, 2 (Feb. 2014). DOI:https://doi.org/10.1007/s00445-013-0771-9.
[245]
Saunders, A.D. 2005. Large Igneous Provinces: Origin and Environmental Consequences. Elements. 1, 5 (Dec. 2005), 259–263. DOI:https://doi.org/10.2113/gselements.1.5.259.
[246]
Scarth, A. 1994. Volcanoes: an introduction. U C L Press.
[247]
Scarth, A. 1999. Vulcan’s fury: man against the volcano. Yale University Press.
[248]
Schulte, P. et al. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science. 327, 5970 (Mar. 2010), 1214–1218. DOI:https://doi.org/10.1126/science.1177265.
[249]
Senatore, M.R. et al. 2014. Pompeii Damaged by Volcaniclastic Debris Flows Triggered Centuries Prior to the 79 A.D. Vesuvius Eruption. Geoarchaeology. 29, 1 (Jan. 2014), 1–15. DOI:https://doi.org/10.1002/gea.21458.
[250]
Shaw, R. et al. 2010. Climate change adaptation and disaster risk reduction: an Asian perspective, Vol. 5. Emerald Group Pub. Ltd.
[251]
Sigl, M. et al. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 523, 7562 (Jul. 2015), 543–549. DOI:https://doi.org/10.1038/nature14565.
[252]
Sigurdsson, H. 2000. Encyclopedia of volcanoes. Academic Press.
[253]
Sinabung volcano: how culture shapes community resilience: https://www.emerald.com/insight/content/doi/10.1108/DPM-05-2018-0160/full/pdf?title=sinabung-volcano-how-culture-shapes-community-resilience.
[254]
Smith, E.I. et al. 2018. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature. 555, 7697 (Mar. 2018), 511–515. DOI:https://doi.org/10.1038/nature25967.
[255]
Smith, Eugene I 2018. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. (2018). DOI:https://doi.org/10.17863/CAM.23506.
[256]
Sobolev, S.V. et al. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 477, 7364 (Sep. 2011), 312–316. DOI:https://doi.org/10.1038/nature10385.
[257]
Sobolev, S.V. et al. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 477, 7364 (Sep. 2011), 312–316. DOI:https://doi.org/10.1038/nature10385.
[258]
Solikhin, A. et al. 2015. High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bulletin of Volcanology. 77, 3 (Mar. 2015). DOI:https://doi.org/10.1007/s00445-015-0908-0.
[259]
Sonnek, K.M. et al. 2017. The impacts of a Laki-like eruption on the present Swedish society. Natural Hazards. 88, 3 (Sep. 2017), 1565–1590. DOI:https://doi.org/10.1007/s11069-017-2933-0.
[260]
Sparks, R.S.J. and Aspinall, W.P. 2004. Volcanic activity: Frontiers and challenges in forecasting, prediction and risk assessment. The state of the planet: frontiers and challenges in geophysics. American Geophysical Union. 359–373.
[261]
Steven M. Holland 2016. Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 113, 30 (2016).
[262]
Stone, Richard 2010. Iceland’s doomsday scenario? The more researchers learn about the unheralded Laki eruption of 1783, the more they see a need to prepare for a reprise that could include fluoride poisoning and widespread air pollution.(News Focus). Science. 306, 5700 (2010).
[263]
Stothers, Richard B. 2012. The great Tambora eruption in 1815 and its aftermath. Science. 224, (2012).
[264]
Strom, R.G. et al. 1994. The global resurfacing of Venus. Journal of Geophysical Research. 99, E5 (1994). DOI:https://doi.org/10.1029/94JE00388.
[265]
Sturt W. Manning Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity. 88, 342, 1164–1180.
[266]
van Summeren, J. et al. 2011. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS. The Astrophysical Journal. 736, 1 (Jul. 2011). DOI:https://doi.org/10.1088/2041-8205/736/1/L15.
[267]
Sun, C. et al. 2014. Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption’s timing and impact. Geophysical Research Letters. 41, 2 (Jan. 2014), 694–701. DOI:https://doi.org/10.1002/2013GL058642.
[268]
Takehiro, H. 2016. School-community collaboration in disaster education in a primary school near Merapi volcano in Java Island. AIP Conference Proceedings (2016).
[269]
Tandon, S.K. 2002. Records of the influence of Deccan volcanism on contemporary sedimentary environments in Central India. Sedimentary Geology. 147, 1–2 (Mar. 2002), 177–192. DOI:https://doi.org/10.1016/S0037-0738(01)00196-8.
[270]
Tang, Q. et al. 2013. Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters. 40, 20 (Oct. 2013), 5553–5558. DOI:https://doi.org/10.1002/2013GL056563.
[271]
Terrestrial Volcanism in Space and Time - Annual Review of Earth and Planetary Sciences, 21(1):427: http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.21.050193.002235.
[272]
Thordarson, T. 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research. 108, D1 (2003). DOI:https://doi.org/10.1029/2001JD002042.
[273]
Thouret, J.-C. et al. 2000. Toward a revised hazard assessment at Merapi volcano, Central Java. Journal of Volcanology and Geothermal Research. 100, 1–4 (Jul. 2000), 479–502. DOI:https://doi.org/10.1016/S0377-0273(00)00152-9.
[274]
Tilling, R.I. and Lipman, P.W. 1993. Lessons in reducing volcano risk. Nature. 364, 6435 (Jul. 1993), 277–280. DOI:https://doi.org/10.1038/364277a0.
[275]
Tim Appenzeller Eastern odyssey: humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. Nature. 484, 7396, 24–27.
[276]
Timmreck, C. et al. 2012. Climate response to the Toba super-eruption: Regional changes. Quaternary International. 258, (May 2012), 30–44. DOI:https://doi.org/10.1016/j.quaint.2011.10.008.
[277]
Timmreck, C. 2012. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change. 3, 6 (Nov. 2012), 545–564. DOI:https://doi.org/10.1002/wcc.192.
[278]
Tom Simkin, Lee Siebert and Russell Blong 2001. Volcano Fatalities: Lessons from the Historical Record. Science. 291, 5502 (2001).
[279]
Toohey, M. et al. 2016. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change. 136, 3–4 (Jun. 2016), 401–412. DOI:https://doi.org/10.1007/s10584-016-1648-7.
[280]
Torrence, R. 2019. Social responses to volcanic eruptions: A review of key concepts. Quaternary International. 499, (Jan. 2019), 258–265. DOI:https://doi.org/10.1016/j.quaint.2018.02.033.
[281]
Torrence, R. and Grattan, J. 2002. Natural disasters and cultural change. Routledge.
[282]
Torrence, R. and Grattan, J. 2002. Natural disasters and cultural change. Routledge.
[283]
Trevisanato, S.I. 2006. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 66, 1 (Jan. 2006), 193–196. DOI:https://doi.org/10.1016/j.mehy.2005.08.052.
[284]
Trevisanato, S.I. 2006. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 66, 1 (Jan. 2006), 193–196. DOI:https://doi.org/10.1016/j.mehy.2005.08.052.
[285]
Trigo, R.M. et al. 2010. Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change. 99, 3–4 (Apr. 2010), 535–546. DOI:https://doi.org/10.1007/s10584-009-9676-1.
[286]
Vakulenko, N.V. and Sonechkin, D.M. 2017. Analysis of early instrumental air temperature observations before and after the Tambora volcano eruption. Russian Meteorology and Hydrology. 42, 10 (Oct. 2017), 677–684. DOI:https://doi.org/10.3103/S1068373917100089.
[287]
VAN DE SCHOOTBRUGGE, B. and WIGNALL, P.B. 2016. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine. 153, 2 (Mar. 2016), 332–354. DOI:https://doi.org/10.1017/S0016756815000643.
[288]
Veale, L. and Endfield, G.H. 2016. Situating 1816, the ‘year without summer’, in the UK. The Geographical Journal. 182, 4 (Dec. 2016), 318–330. DOI:https://doi.org/10.1111/geoj.12191.
[289]
Vidal, C.M. et al. 2016. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Scientific Reports. 6, 1 (Dec. 2016). DOI:https://doi.org/10.1038/srep34868.
[290]
Villa, P. et al. 2018. From Neandertals to modern humans: New data on the Uluzzian. PLOS ONE. 13, 5 (May 2018). DOI:https://doi.org/10.1371/journal.pone.0196786.
[291]
Wacey, D. et al. 2014. Geochemistry and nano-structure of a putative ∼3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Research. 249, (Aug. 2014), 1–12. DOI:https://doi.org/10.1016/j.precamres.2014.04.016.
[292]
Wagner, B. et al. 2013. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 9, 3 (Jun. 2013), 3307–3319. DOI:https://doi.org/10.5194/cpd-9-3307-2013.
[293]
Wagner, B. et al. 2013. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 9, 3 (Jun. 2013), 3307–3319. DOI:https://doi.org/10.5194/cpd-9-3307-2013.
[294]
Walker, G.P.L. et al. 1984. Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research. 21, 1–2 (Jun. 1984), 61–78. DOI:https://doi.org/10.1016/0377-0273(84)90016-7.
[295]
Wignall, P. 2005. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements. 1, 5 (Dec. 2005), 293–297. DOI:https://doi.org/10.2113/gselements.1.5.293.
[296]
Wignall, P.B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews. 53, 1–2 (Mar. 2001), 1–33. DOI:https://doi.org/10.1016/S0012-8252(00)00037-4.
[297]
Williams, M.A.J. et al. 2009. Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 284, 3–4 (Dec. 2009), 295–314. DOI:https://doi.org/10.1016/j.palaeo.2009.10.009.
[298]
Williams, M.A.J. et al. 2010. Reply to the comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal, P. R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 296, 1–2 (Oct. 2010), 204–211. DOI:https://doi.org/10.1016/j.palaeo.2010.05.043.
[299]
Wilson, R.M. 1999. Variation of surface air temperatures in relation to El Niño and cataclysmic volcanic eruptions, 1796–1882. Journal of Atmospheric and Solar-Terrestrial Physics. 61, 17 (Nov. 1999), 1307–1319. DOI:https://doi.org/10.1016/S1364-6826(99)00055-3.
[300]
Winchester, S. 2004. Krakatoa: the day the world exploded, 27 August 1883. Penguin Books.
[301]
Witham, C.S. 2005. Volcanic disasters and incidents: A new database. Journal of Volcanology and Geothermal Research. 148, 3–4 (Dec. 2005), 191–233. DOI:https://doi.org/10.1016/j.jvolgeores.2005.04.017.
[302]
Witham, C.S. and Oppenheimer, C. 2004. Mortality in England during the 1783?4 Laki Craters eruption. Bulletin of Volcanology. 67, 1 (Dec. 2004), 15–26. DOI:https://doi.org/10.1007/s00445-004-0357-7.
[303]
Woo, J.Y.L. and Kilburn, C.R.J. 2010. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. Journal of Geophysical Research. 115, B12 (Dec. 2010). DOI:https://doi.org/10.1029/2009JB006913.
[304]
Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang and Xulong Lai 2012. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science. 338, 6105 (2012).
[305]
Yalcin, K. et al. 2006. Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere. Geophysical Research Letters. 33, 14 (2006). DOI:https://doi.org/10.1029/2006GL026013.
[306]
YANG, Z. et al. 2017. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science. 126, 1 (Feb. 2017). DOI:https://doi.org/10.1007/s12040-016-0790-y.
[307]
Zambri, B. et al. 2019. Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research: Atmospheres. (Jul. 2019). DOI:https://doi.org/10.1029/2018JD029553.
[308]
Zambri, B. et al. 2019. Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres. (Jul. 2019). DOI:https://doi.org/10.1029/2018JD029554.
[309]
Zanchetta, G. et al. 2019. Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quaternary International. 499, (Jan. 2019), 186–194. DOI:https://doi.org/10.1016/j.quaint.2018.06.012.
[310].
Atmospheric and environmental effects of the 1783-­‐1784 Laki eruption: a review and reassessment.
[311]
20150411. After Tambora. The Economist. (20150411).
[312]
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions - Schmidt et al, 2014, JGR, Assessing_SO2_aviation_hazards.pdf.
[313]
Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid | Elsevier Enhanced Reader.
[314]
Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) | Elsevier Enhanced Reader.
[315]
Combining historical and 14C data to assess pyroclastic density current hazards in BaNos city near Tungurahua volcano (Ecuador) | Elsevier Enhanced Reader.
[316]
Communicating eruption and hazard forecasts on Vesuvius, Southern Italy.
[317]
Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models | Elsevier Enhanced Reader.
[318]
cp-2017-147.pdf.
[319]
Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China - Zhang et al., accepted.pdf.
[320]
Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic | Elsevier Enhanced Reader.
[321]
2015. Earth-Science Reviews. 149, (2015).
[322]
Evidence of cultural responses to the impact of the Mazama ash fall from deeply stratified archaeological sites in southern Alberta, Canada | Elsevier Enhanced Reader.
[323]
Evidence-­‐based volcanology: application to eruption crises.
[324]
Expert judgment and the Montserrat Volcano eruption.
[325]
2011. Hints of a volcanically active exomoon. Space Daily. (2011).
[326]
2019. Journal of Volcanology and Geothermal Research: Special issue on Sinabung and Kelud. 382, (2019).
[327]
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans | Elsevier Enhanced Reader.
[328]
Lessons from recent Icelandic eruptions.
[329]
Medical papyri describe the effects of the Santorinieruption on human health, and date the eruptionto August 1603–March 1601 BC.
[330]
Modeling cultural responses to volcanic disaster in the ancient Jama-Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience | Elsevier Enhanced Reader.
[331]
Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery | Elsevier Enhanced Reader.
[332]
Multiple impacts across the Cretaceous–Tertiary boundary.
[333]
Prehistoric human responses to volcanic tephra fall events in the Ust-Kamchatsk region, Kamchatka Peninsula (Kamchatsky Krai, Russian Federation) during the middle to late Holocene (6000-500 cal BP) | Elsevier Enhanced Reader.
[334]
Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction.
[335]
2012. Quaternary International. 258, (2012).
[336]
Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability.
[337]
Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE | Elsevier Enhanced Reader.
[338]
Six medical papyri describe the effect of Santorini’s volcanic ash.
[339]
Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader.
[340]
Social responses to volcanic eruptions: A review of key concepts | Elsevier Enhanced Reader.
[341]
Speleothems as sensitive recorders of volcanic eruptions – the Bronze Age Minoan eruption recorded in a stalagmite from Turkey | Elsevier Enhanced Reader.
[342]
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece) - srep12243.pdf.
[343]
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader.
[344]
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader.
[345]
The ∼73 ka Toba super-eruption and its impact: History of a debate | Elsevier Enhanced Reader.
[346]
The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro | Elsevier Enhanced Reader.
[347]
The drought and locust plague of 942-944 AD in the Yellow River Basin, China | Elsevier Enhanced Reader.
[348]
The Economics of Natural Disasters - cesifo-forum-v11-y2010-i2-p014-024.pdf.
[349]
The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy) | Elsevier Enhanced Reader.
[350]
The timing and spatiotemporal patterning of Neanderthal disappearance. Nature. 512, 7514, 306–310.
[351]
Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland) - 1-s2.0-S0012821X17302911-main.pdf.
[352]
Volcanic activity and human society | Elsevier Enhanced Reader.
[353]
Volcanic disasters and agricultural intensification: A case study from the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader.
[354]
Volcanism and tectonics on Venus.