1.
Papale P, Marzocchi W. Volcanic threats to global society. Science. 2019;363(6433):1275-1276.
2.
Francis P, Oppenheimer C. Volcanoes - 10 Copies in the Library. 2nd ed. Oxford University Press; 2004.
3.
Chester DK. Volcanoes and Society. E. Arnold; 1994.
4.
Papale P, Shroder JF, eds. Volcanic Hazards, Risks and Disasters. Elsevier; 2014. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780123964762
5.
Jón Steingrímsson. Fires of the Earth: The Laki Eruption, 1783-1784. Nordic Volcanological Institute; 1998.
6.
Martí J, Ernst G. Volcanoes and the Environment. Cambridge University Press; 2005. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780511331343
7.
Oppenheimer C. Eruptions That Shook the World. Cambridge University Press; 2011. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781139111751
8.
Lessons from recent Icelandic eruptions. https://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and%20Development/r0112_highimpact.pdf
9.
Fahrenkamp-Uppenbrink J. Preparing for the next supereruption. Science. 2019;363(6433):1296.16-1298. doi:10.1126/science.363.6433.1296-p
10.
Decker RW, Decker B. Volcanoes. 3rd ed. W. H. Freeman; 1998.
11.
Firth CR, McGuire B. Volcanoes in the Quaternary. Vol Geological Society special publication. Geological Society; 1999.
12.
McCoy F, Heiken G. Volcanic Hazards and Disasters in Human Antiquity. Vol Special paper / Geological Society of America. Geological Society of America; 2000.
13.
Rothery DA. Volcanoes, Earthquakes and Tsunamis. [New] ed. Teach Yourself; 2010. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781444127416
14.
Rosi M, Hyams J. Volcanoes. Vol A Firefly guide. Firefly Books; 2003.
15.
Scarth A. Volcanoes: An Introduction. U C L Press; 1994.
16.
Scarth A. Vulcan’s Fury: Man against the Volcano. Yale University Press; 1999.
17.
Sigurdsson H. Encyclopedia of Volcanoes. Academic Press; 2000.
18.
Winchester S. Krakatoa: The Day the World Exploded, 27 August 1883. Penguin Books; 2004.
19.
Alwyn Scarth. La catastrophe: Mount Pelée and the destruction of Saint-Pierre, Martinique - Alwyn Scarth - Google Books. http://books.google.co.uk/books/about/La_catastrophe.html?id=SxROAQAAIAAJ&redir_esc=y
20.
The Economics of Natural Disasters - cesifo-forum-v11-y2010-i2-p014-024.pdf. https://www.econstor.eu/bitstream/10419/166388/1/cesifo-forum-v11-y2010-i2-p014-024.pdf
21.
Sinabung volcano: how culture shapes community resilience. doi:10.1108/DPM-05-2018-0160/full/pdf?title=sinabung-volcano-how-culture-shapes-community-resilience
22.
Barclay J, Few R, Armijos MT, et al. Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science. 2019;7. doi:10.3389/feart.2019.00205
23.
Armijos MT, Phillips J, Wilkinson E, et al. Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change. 2017;45:217-226. doi:10.1016/j.gloenvcha.2017.06.002
24.
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 2017;80:72-81. doi:10.1016/j.geoforum.2017.01.006
25.
Jonathan Stone. Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology. 2014;3(1). https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-014-0011-9
26.
Andreastuti S, Paripurno E, Gunawan H, Budianto A, Syahbana D, Pallister J. Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research. 2019;382:298-310. doi:10.1016/j.jvolgeores.2017.01.022
27.
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 2017;80:72-81. doi:10.1016/j.geoforum.2017.01.006
28.
Haynes K, Barclay J, Pidgeon N. The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology. 2008;70(5):605-621. doi:10.1007/s00445-007-0156-z
29.
Hizbaron DR, Hadmoko DS, Mei ETW, et al. Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Applied Geography. 2018;97:212-227. doi:10.1016/j.apgeog.2018.06.012
30.
Barclay J, Haynes K, Mitchell T, et al. Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society, London, Special Publications. 2008;305(1):163-177. doi:10.1144/SP305.14
31.
Tom Simkin, Lee Siebert and Russell Blong. Volcano Fatalities: Lessons from the Historical Record. Science. 2001;291(5502). https://www.jstor.org/stable/3082329?seq=1#metadata_info_tab_contents
32.
Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0377027318301938?token=9E0D82814455B3D276499E8D54AA49CF5264293F6AD0E3761B96E54DA192B1C6C94BE8698A5DCC02708A72B314FF43DE
33.
Journal of Volcanology and Geothermal Research: Special issue on Sinabung and Kelud. 2019;382. https://www.sciencedirect.com/journal/journal-of-volcanology-and-geothermal-research/vol/382/suppl/C
34.
Delos Reyes PJ, Bornas MaAV, Dominey-Howes D, Pidlaoan AC, Magill CR, Solidum, Jr. RU. A synthesis and review of historical eruptions at Taal Volcano, Southern Luzon, Philippines. Earth-Science Reviews. 2018;177:565-588. doi:10.1016/j.earscirev.2017.11.014
35.
Witham CS. Volcanic disasters and incidents: A new database. Journal of Volcanology and Geothermal Research. 2005;148(3-4):191-233. doi:10.1016/j.jvolgeores.2005.04.017
36.
Combining historical and 14C data to assess pyroclastic density current hazards in BaNos city near Tungurahua volcano (Ecuador) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215006527?token=4101E87BDEF7DB65923F9AA1B5FC04E275004933C8457E4B5DFF9A5C5FF6FA744CA133B014E81D6C792BA3B7CC418437
37.
Pistolesi M, Cioni R, Rosi M, Aguilera E. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 2014;207:51-63. doi:10.1016/j.geomorph.2013.10.026
38.
Pistolesi M, Cioni R, Rosi M, Aguilera E. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 2014;207:51-63. doi:10.1016/j.geomorph.2013.10.026
39.
Pistolesi M, Cioni R, Rosi M, Cashman KV, Rossotti A, Aguilera E. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology. 2013;75(3). doi:10.1007/s00445-013-0698-1
40.
Barberi F, Martini M, Rosi M. Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. Journal of Volcanology and Geothermal Research. 1990;42(1-2):1-12. doi:10.1016/0377-0273(90)90066-O
41.
Künzler M, Huggel C, Ramírez JM. A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards. 2012;64(1):767-796. doi:10.1007/s11069-012-0271-9
42.
Dibben C, Chester DK. Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. Journal of Volcanology and Geothermal Research. 1999;92(1-2):133-150. doi:10.1016/S0377-0273(99)00072-4
43.
Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G, eds. Observing the Volcano World: Volcano Crisis Communication. 1st ed. 2018. Springer International Publishing; 2018. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3783283660002418&institutionId=2418&customerId=2415
44.
Leonard GS, Johnston DM, Paton D, Christianson A, Becker J, Keys H. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research. 2008;172(3-4):199-215. doi:10.1016/j.jvolgeores.2007.12.008
45.
De la Cruz-Reyna S, Tilling RI. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system. Journal of Volcanology and Geothermal Research. 2008;170(1-2):121-134. doi:10.1016/j.jvolgeores.2007.09.002
46.
Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. http://pubs.er.usgs.gov/publication/pp175024
47.
Communicating eruption and hazard forecasts on Vesuvius, Southern Italy. http://www.ucl.ac.uk/volcanoscope/files/pdf%20files/Solana%20et%20al_Hazard%20Perception_Vesuvius_JVGR_2008.pdf
48.
Chester DK, Duncan AM, Sangster H. Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning. Journal of Volcanology and Geothermal Research. 2012;225-226:65-80. doi:10.1016/j.jvolgeores.2012.02.017
49.
Allibone R, Cronin SJ, Charley DT, Neall VE, Stewart RB, Oppenheimer C. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health. 2012;34(2):155-170. doi:10.1007/s10653-010-9338-2
50.
Connor CB. Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrière Hills Volcano, Montserrat. Geophysical Research Letters. 2003;30(13). doi:10.1029/2003GL017384
51.
Expert judgment and the Montserrat Volcano eruption. http://dutiosc.twi.tudelft.nl/~risk/extrafiles/EJcourse/Sheets/Aspinall%20&%20Cooke%20PSAM4%203-9.pdf
52.
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 2013;65(1):477-495. doi:10.1007/s11069-012-0378-z
53.
Evidence-­‐based volcanology: application to eruption crises. http://www.geo.mtu.edu/~raman/VTimeSer/Bayesian_files/aspinall_etal_evidence_based_volcanology_application_eruption_crisis_Galeras.pdf
54.
Barberi F, Carapezza ML, Valenza M, Villari L. The control of lava flow during the 1991–1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research. 1993;56(1-2):1-34. doi:10.1016/0377-0273(93)90048-V
55.
A new approach to assess long-­‐term lava flow hazard and risk using GIS and low-­‐cost remote sensing: the case of Mount Cameroon, West Africa. http://www.tandfonline.com/doi/pdf/10.1080/01431160802167873
56.
Chester DK, Dibben CJL, Duncan AM. Volcanic hazard assessment in western Europe. Journal of Volcanology and Geothermal Research. 2002;115(3-4):411-435. doi:10.1016/S0377-0273(02)00210-X
57.
Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability. http://www.geo.arizona.edu/~andyf/LaPalma/Rift%20Zone.pdf
58.
Fearnley CJ, McGuire WJ, Davies G, Twigg J. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bulletin of Volcanology. 2012;74(9):2023-2036. doi:10.1007/s00445-012-0645-6
59.
Newhall C, Hoblitt R. Constructing event trees for volcanic crises. Bulletin of Volcanology. 2002;64(1):3-20. doi:10.1007/s004450100173
60.
Tilling RI, Lipman PW. Lessons in reducing volcano risk. Nature. 1993;364(6435):277-280. doi:10.1038/364277a0
61.
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 2013;65(1):477-495. doi:10.1007/s11069-012-0378-z
62.
Countries | UNITAR. https://unitar.org/maps/countries
63.
Sparks RSJ, Aspinall WP. Volcanic activity: Frontiers and challenges in forecasting, prediction and risk assessment. In: The State of the Planet: Frontiers and Challenges in Geophysics. Vol Geophysical monograph. American Geophysical Union; 2004:359-373. https://doi.org/10.1029/150GM28
64.
Takehiro H. School-community collaboration in disaster education in a primary school near Merapi volcano in Java Island. In: AIP Conference Proceedings. Author(s); 2016. doi:10.1063/1.4947418
65.
Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R. Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Volcanology. 2014;76(2). doi:10.1007/s00445-013-0771-9
66.
Solikhin A, Thouret JC, Liew SC, et al. High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bulletin of Volcanology. 2015;77(3). doi:10.1007/s00445-015-0908-0
67.
Bakkour D, Enjolras G, Thouret JC, Kast R, Mei ETW, Prihatminingtyas B. The adaptive governance of natural disaster systems: Insights from the 2010 mount Merapi eruption in Indonesia. International Journal of Disaster Risk Reduction. 2015;13:167-188. doi:10.1016/j.ijdrr.2015.05.006
68.
Shaw R, Pulhin JM, Pereira JJ. Climate Change Adaptation and Disaster Risk Reduction: An Asian Perspective, Vol. 5. Vol v. 5. 1st ed. Emerald Group Pub. Ltd; 2010. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=4047952180002418&institutionId=2418&customerId=2415
69.
Angela K Diefenbach. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology. 2015;4(1). https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-015-0024-z
70.
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions - Schmidt et al, 2014, JGR, Assessing_SO2_aviation_hazards.pdf. http://eprints.whiterose.ac.uk/82709/1/Schmidt%20et%20al%2C%202014%2C%20JGR%2C%20Assessing_SO2_aviation_hazards.pdf
71.
Anja Schmidt, Claire S. Witham, Nicolas Theys, Nigel A. D. Richards, Thorvaldur Thordarson, Kate Szpek, Wuhu Feng, Matthew C. Hort, Alan M. Woolley, Andrew R. Jones, Alison L. Redington, Ben T. Johnson, Chris L. Hayward, Kenneth S. Carslaw. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research: Atmospheres. 2014;119(24):14,180-14,196. doi:10.1002/2014JD022070
72.
Longo BM, Rossignol A, Green JB. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health. 2008;122(8):809-820. doi:10.1016/j.puhe.2007.09.017
73.
Olsson J, Stipp SLS, Dalby KN, Gislason SR. Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta. 2013;123:134-149. doi:10.1016/j.gca.2013.09.009
74.
Cooper CL, Swindles GT, Savov IP, Schmidt A, Bacon KL. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews. 2018;177:238-247. doi:10.1016/j.earscirev.2017.11.009
75.
Robock A. Volcanic eruptions and climate. Reviews of Geophysics. 2000;38(2):191-219. doi:10.1029/1998RG000054
76.
Robock A. Climatic impact of volcanic emissions. In: The State of the Planet: Frontiers and Challenges in Geophysics. American Geophysical Union; 2004:125-134. https://doi.org/10.1029/150GM11
77.
Sigl M, Winstrup M, McConnell JR, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015;523(7562):543-549. doi:10.1038/nature14565
78.
McConnell JR, Burke A, Dunbar NW, et al. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences. 2017;114(38):10035-10040. doi:10.1073/pnas.1705595114
79.
Miller GH, Geirsdóttir Á, Zhong Y, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters. 2012;39(2):n/a-n/a. doi:10.1029/2011GL050168
80.
Bethke I, Outten S, Otterå OH, et al. Potential volcanic impacts on future climate variability. Nature Climate Change. 2017;7(11):799-805. doi:10.1038/nclimate3394
81.
Matthew Toohey. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data. 9(2):809-809. https://go.gale.com/ps/i.do?&id=GALE|A513556448&v=2.1&u=uniaber&it=r&p=AONE&sw=w
82.
Timmreck C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change. 2012;3(6):545-564. doi:10.1002/wcc.192
83.
Sun C, Plunkett G, Liu J, et al. Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption’s timing and impact. Geophysical Research Letters. 2014;41(2):694-701. doi:10.1002/2013GL058642
84.
Wilson RM. Variation of surface air temperatures in relation to El Niño and cataclysmic volcanic eruptions, 1796–1882. Journal of Atmospheric and Solar-Terrestrial Physics. 1999;61(17):1307-1319. doi:10.1016/S1364-6826(99)00055-3
85.
Oman L, Robock A, Stenchikov GL, Thordarson T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters. 2006;33(18):n/a-n/a. doi:10.1029/2006GL027665
86.
Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-00957-y
87.
Arfeuille F, Weisenstein D, Mack H, Rozanov E, Peter T, Brönnimann S. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past. 2014;10(1):359-375. doi:10.5194/cp-10-359-2014
88.
Sadler JP, Grattan JP. Volcanoes as agents of past environmental change. Global and Planetary Change. 1999;21(1-3):181-196. doi:10.1016/S0921-8181(99)00014-4
89.
D’Arrigo R, Wilson R, Anchukaitis KJ. Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres. 2013;118(16):9000-9010. doi:10.1002/jgrd.50692
90.
H. Tuffen and R. Betts. Volcanism and climate: chicken and egg (or vice versa)? Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2010;368(1919):2585-2588. http://www.jstor.org/stable/25753430
91.
Abdullah, Mikrajuddin. Interpretation of Past Kingdoms Poems to Reconstruct the Physical Phenomena in the Past: Case of Great Tambora Eruption 1815. Published online 2012. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_arxiv1609.09225&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
92.
Torrence R, Grattan J. Natural Disasters and Cultural Change. Vol One world archaeology. Routledge; 2002. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037246860002418&institutionId=2418&customerId=2415
93.
Harington CR. The Year without a Summer?: World Climate in 1816. Canadian Museum of Nature; 1992.
94.
Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography. 2003;27(2):230-259. doi:10.1191/0309133303pp379ra
95.
Behringer W, Selwyn PE. Tambora and the Year without a Summer: How a Volcano Plunged the World into Crisis. Polity; 2019.
96.
Rössler O, Brönnimann S. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment. 2018;627:1218-1227. doi:10.1016/j.scitotenv.2018.01.254
97.
Kandlbauer J, Sparks RSJ. New estimates of the 1815 Tambora eruption volume. Journal of Volcanology and Geothermal Research. 2014;286:93-100. doi:10.1016/j.jvolgeores.2014.08.020
98.
Stothers, Richard B. The great Tambora eruption in 1815 and its aftermath. Science. 2012;224. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa3309276&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
99.
Gao C, Gao Y, Zhang Q, Shi C. Climatic aftermath of the 1815 Tambora eruption in China. Journal of Meteorological Research. 2017;31(1):28-38. doi:10.1007/s13351-017-6091-9
100.
Cao, Shuji. Mt. Tambora, Climatic Changes, and China’s Decline in the Nineteenth Century. Journal of World History. 2012;23(3):587-607. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_museS1527805012300043&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
101.
Kandlbauer J, Hopcroft PO, Valdes PJ, Sparks RSJ. Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research: Atmospheres. 2013;118(22):12,497-12,507. doi:10.1002/2013JD019767
102.
Marshall, Lauren. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics. 18(3):2307-2328. doi:https://doi.org/10.5194/acp-18-2307-2018
103.
After Tambora. The Economist. Published online 20150411. https://www.economist.com/news/briefing/21647958-two-hundred-years-ago-most-powerful-eruption-modern-history-made-itself-felt-around
104.
Vakulenko NV, Sonechkin DM. Analysis of early instrumental air temperature observations before and after the Tambora volcano eruption. Russian Meteorology and Hydrology. 2017;42(10):677-684. doi:10.3103/S1068373917100089
105.
Alexander KE, Leavenworth WB, Willis TV, et al. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event. Science Advances. 2017;3(1). doi:10.1126/sciadv.1601635
106.
Lorenz S. Exploring the climate response to the Tambora in 1815 and the 1809 tropical eruption. Quaternary International. 2012;279-280. doi:10.1016/j.quaint.2012.08.770
107.
Flückiger S, Brönnimann S, Holzkämper A, et al. Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios. Environmental Research Letters. 2017;12(7). doi:10.1088/1748-9326/aa7246
108.
Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH. Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters. 2009;36(22). doi:10.1029/2009GL040882
109.
Yalcin K, Wake CP, Kreutz KJ, Germani MS, Whitlow SI. Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere. Geophysical Research Letters. 2006;33(14). doi:10.1029/2006GL026013
110.
A. Guevara-Murua. Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past. 10(5):1707-1707. https://go.gale.com/ps/i.do?&id=GALE|A481428553&v=2.1&u=uniaber&it=r&p=AONE&sw=w
111.
Gale General OneFile - Document - First eyewitness accounts of mystery volcanic eruption. https://go.gale.com/ps/i.do?&id=GALE|A383506238&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
112.
Brá. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Climate of the Past. 2012;12(6). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa503206931&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
113.
Veale L, Endfield GH. Situating 1816, the ‘year without summer’, in the UK. The Geographical Journal. 2016;182(4):318-330. doi:10.1111/geoj.12191
114.
Gertisser, R. The great 1815 eruption of Tambora and future risks from large-scale volcanism.(Report). Geology Today. 2012;31(4). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa423720429&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
115.
Hubbard Z. Paintings in the Year Without a Summer. Philologia. 2019;11(1). doi:10.21061/ph.173
116.
Alan Robock. The Climatic Aftermath. Science. 2002;295(5558). https://www.jstor.org/stable/3075904?seq=1#metadata_info_tab_contents
117.
Aquila V, Oman LD, Stolarski RS, Colarco PR, Newman PA. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. Journal of Geophysical Research: Atmospheres. 2012;117(D6):n/a-n/a. doi:10.1029/2011JD016968
118.
Brian J. Soden. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. (Reports). Science. 296(5568):727-731. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A86062245&v=2.1&it=r
119.
Tang Q, Hess PG, Brown-Steiner B, Kinnison DE. Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters. 2013;40(20):5553-5558. doi:10.1002/2013GL056563
120.
Meehl GA, Teng H, Maher N, England MH. Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters. 2015;42(24):10,840-10,846. doi:10.1002/2015GL066608
121.
Grattan J, Torrence R, World Archaeological Congress. Living under the Shadow: Cultural Impacts of Volcanic Eruptions. Vol 53. Left Coast Press; 2007. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3794712070002418&institutionId=2418&customerId=2415
122.
Franck Lavigne, Jean-Philippe Degeai, Jean-Christophe Komorowski, Sébastien Guillet, Vincent Robert, Pierre Lahitte, Clive Oppenheimer, Markus Stoffel, Céline M. Vidal, Surono, Indyo Pratomo, Patrick Wassmer, Irka Hajdas, Danang Sri Hadmoko and Edouard de Belizal. Source of the great A.D. 1257 mystery eruption unveiled,                            Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(42). https://www.jstor.org/stable/23750657?seq=1#metadata_info_tab_contents
123.
Vidal CM, Métrich N, Komorowski JC, et al. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Scientific Reports. 2016;6(1). doi:10.1038/srep34868
124.
Campbell BMS. GLOBAL CLIMATES, THE 1257 MEGA-ERUPTION OF SAMALAS VOLCANO, INDONESIA, AND THE ENGLISH FOOD CRISIS OF 1258. Transactions of the Royal Historical Society. 2017;27:87-121. doi:10.1017/S0080440117000056
125.
London’s volcanic winter - Current Archaeology. https://www.archaeology.co.uk/articles/features/londons-volcanic-winter.htm
126.
Guillet, S. Climate response to the 1257 Samalas eruption revealed 1 by proxy records. Published online 2017. https://www.repository.cam.ac.uk/handle/1810/262757
127.
YANG Z, LONG N, WANG Y, ZHOU X, LIU Y, SUN L. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science. 2017;126(1). doi:10.1007/s12040-016-0790-y
128.
Alloway BV, Andreastuti S, Setiawan R, Miksic J, Hua Q. Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago. Quaternary Science Reviews. 2017;155:86-99. doi:10.1016/j.quascirev.2016.11.020
129.
Toohey M, Krüger K, Sigl M, Stordal F, Svensen H. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change. 2016;136(3-4):401-412. doi:10.1007/s10584-016-1648-7
130.
Pfister C, Schwarz-Zanetti G, Wegmann M, Luterbacher J. Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). The Holocene. 1998;8(5):535-552. doi:10.1191/095968398675289943
131.
Gräslund, BoPrice, Neil. Twighlight of the gods? The dust veil event of AD 536 in critical perspective. 86(2):428-443. https://search.proquest.com/docview/1021249071/9F226CEE94194FE3PQ/1?accountid=14783
132.
cp-2017-147.pdf. https://www.clim-past-discuss.net/cp-2017-147/cp-2017-147.pdf
133.
J. U. L. Baldini. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past. 2018;14:969-990. https://doaj.org/article/c82dab44001c4b949ee409f70f257021
134.
Dogar MM, Stenchikov G, Osipov S, Wyman B, Zhao M. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. Journal of Geophysical Research: Atmospheres. 2017;122(15):7922-7948. doi:10.1002/2017JD026783
135.
Muhammad Mubashar Dogar. Ocean Sensitivity to Periodic and Constant Volcanism. Scientific Reports. 2020;10(1):1-15. https://doaj.org/article/905bab3aa68c4f97bbd9c963984ae3f1
136.
Joanna  Slawinska. Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. Published online 15 February 2018. doi:JCLI-D-16-0498
137.
Brian Zambri, Allegra N. LeGrande, Alan Robock, Joanna Slawinska. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres. 2017;122(15):7971-7989. doi:10.1002/2017JD026728
138.
Papale P. Global time-size distribution of volcanic eruptions on Earth. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-25286-y
139.
Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland) - 1-s2.0-S0012821X17302911-main.pdf. https://discovery.ucl.ac.uk/id/eprint/10074536/1/1-s2.0-S0012821X17302911-main.pdf
140.
Zambri B, Robock A, Mills MJ, Schmidt A. Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research: Atmospheres. Published online 4 July 2019. doi:10.1029/2018JD029553
141.
Zambri B, Robock A, Mills MJ, Schmidt A. Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres. Published online 4 July 2019. doi:10.1029/2018JD029554
142.
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(38):15710-15715. http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
143.
Jón Steingrímsson. Fires of the Earth: The Laki Eruption, 1783-1784. Nordic Volcanological Institute; 1998.
144.
Grattan JP, Pyatt FB. Acid damage to vegetation following the Laki fissure eruption in 1783 — an historical review. Science of The Total Environment. 1994;151(3):241-247. doi:10.1016/0048-9697(94)90473-1
145.
Pollution and paradigms: lessons from Icelandic volcanism for - Pollution and paradigms1.pdf. http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution%20and%20paradigms1.pdf?sequence=1
146. .
Atmospheric and environmental effects of the 1783-­‐1784 Laki eruption: a review and reassessment. http://seismo.berkeley.edu/~manga/LIPS/thordarson03.pdf
147.
Lanciki A, Cole-Dai J, Thiemens MH, Savarino J. Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters. 2012;39(1):n/a-n/a. doi:10.1029/2011GL050075
148.
Effects of volcanic air pollution on health. https://www.researchgate.net/publication/12118448_Effects_of_volcanic_air_pollution_on_health
149.
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(38):15710-15715. http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
150.
Witham CS, Oppenheimer C. Mortality in England during the 1783?4 Laki Craters eruption. Bulletin of Volcanology. 2004;67(1):15-26. doi:10.1007/s00445-004-0357-7
151.
Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783. https://www.researchgate.net/publication/249868764_Non-climatic_factors_and_the_environmental_impact_of_volcanic_volatiles_Implications_of_the_Laki_fissure_eruption_of_AD_1783
152.
Stone, Richard. Iceland’s doomsday scenario? The more researchers learn about the unheralded Laki eruption of 1783, the more they see a need to prepare for a reprise that could include fluoride poisoning and widespread air pollution.(News Focus). Science. 2010;306(5700). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa126164075&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
153.
Trigo RM, Vaquero JM, Stothers RB. Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change. 2010;99(3-4):535-546. doi:10.1007/s10584-009-9676-1
154.
D’Arrigo R, Seager R, Smerdon JE, LeGrande AN, Cook ER. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophysical Research Letters. 2011;38(5):n/a-n/a. doi:10.1029/2011GL046696
155.
Balkanski Y, Menut L, Garnier E, et al. Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-34228-7
156.
Thordarson T. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research. 2003;108(D1). doi:10.1029/2001JD002042
157.
Brázdil R, Demarée GR, Deutsch M, et al. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology. 2010;100(1-2):163-189. doi:10.1007/s00704-009-0170-5
158.
Jacoby, Gc. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews. 1999;18(12):1365-1371. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000083568700004&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
159.
Sonnek KM, Mårtensson T, Veibäck E, et al. The impacts of a Laki-like eruption on the present Swedish society. Natural Hazards. 2017;88(3):1565-1590. doi:10.1007/s11069-017-2933-0
160.
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 2006;76(3-4):443-457. doi:10.1007/s10584-005-9012-3
161.
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 2006;76(3-4):443-457. doi:10.1007/s10584-005-9012-3
162.
The drought and locust plague of 942-944 AD in the Yellow River Basin, China | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214009215?token=95E82F06BE891AA37145B67D4A9B21F07267BC7E62AE025444E60286F4D9BB0BC9C7ED2CE641808B3AA00F62292967D1
163.
Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörð K, Ólafsdóttir R. The millennium eruption of Hekla in February 2000. Bulletin of Volcanology. 2007;70(2):169-182. doi:10.1007/s00445-007-0128-3
164.
Walker GPL, Self S, Wilson L. Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research. 1984;21(1-2):61-78. doi:10.1016/0377-0273(84)90016-7
165.
Jona Schellekens. Irish famines and English mortality in the eighteenth century. The Journal of Interdisciplinary History. 27(1):29-43. https://go.gale.com/ps/i.do?&id=GALE|A18579104&v=2.1&u=uniaber&it=r&p=AONE&sw=w
166.
J. Lelieveld. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 525(7569):367-385. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE%7CA429410745&v=2.1&it=r
167.
Gale General OneFile - Document - Air pollution ‘causes more deaths than smoking’. https://go.gale.com/ps/i.do?&id=GALE|A578128317&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
168.
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres. 2015;120(18):9739-9757. doi:10.1002/2015JD023638
169.
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres. 2015;120(18):9739-9757. doi:10.1002/2015JD023638
170.
Rampino MR, Self S, Stothers RB. Volcanic Winters. Annual Review of Earth and Planetary Sciences. 1988;16(1):73-99. doi:10.1146/annurev.ea.16.050188.000445
171.
Harris B. The potential impact of super-volcanic eruptions on the Earth’s atmosphere. Weather. 2008;63(8):221-225. doi:10.1002/wea.263
172.
Rampino M. Supereruptions as a Threat to Civilizations on Earth-like Planets. Icarus. 2002;156(2):562-569. doi:10.1006/icar.2001.6808
173.
Miller CF, Wark DA. SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS. Elements. 2008;4(1):11-15. doi:10.2113/GSELEMENTS.4.1.11
174.
Kent A. RESEARCH FOCUS: Tackling supervolcanoes: Big and fast? Geology. 2015;43(11):1039-1040. doi:10.1130/focus112015.1
175.
Gualda GAR, Sutton SR. The Year Leading to a Supereruption. PLOS ONE. 2016;11(7). doi:10.1371/journal.pone.0159200
176.
Dunbar NW, Iverson NA, Van Eaton AR, et al. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports. 2017;7(1). doi:10.1038/s41598-017-11758-0
177.
Ryan C. Bay, Nathan Bramall and P. Buford Price. Bipolar Correlation of Volcanism with Millennial Climate Change. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(17). https://www.jstor.org/stable/3372084?seq=1#metadata_info_tab_contents
178.
Historical unrest at large calderas of the world. http://pubs.er.usgs.gov/publication/b1855
179.
Anja Schmidt. https://www.researchgate.net/profile/Anja_Schmidt
180.
Mastin LG, Van Eaton AR, Lowenstern JB. Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems. 2014;15(8):3459-3475. doi:10.1002/2014GC005469
181.
Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0277379119305712?token=963CD51172E1708D01C09E5C4667F89C6CE9FD3F957B0177EC133AC6F6B960CF331F3C2E140EE61CE2D2AC8BB5E2FB1F
182.
The ∼73 ka Toba super-eruption and its impact: History of a debate | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821100485X?token=8BF1083F8D14FAB06C16D7C57DD08CEFAA3F7D958B6428004B30024D0B707C5E11140A670864D0A693B6714D582E784E
183.
Timmreck C, Graf HF, Zanchettin D, Hagemann S, Kleinen T, Krüger K. Climate response to the Toba super-eruption: Regional changes. Quaternary International. 2012;258:30-44. doi:10.1016/j.quaint.2011.10.008
184.
Oppenheimer C. Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP? Quaternary Science Reviews. 2002;21(14-15):1593-1609. doi:10.1016/S0277-3791(01)00154-8
185.
Rampino, M R. Bottleneck in human evolution and the Toba eruption. Science (New York. 2014;262(5142). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_medline8266085&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
186.
Robock A, Ammann CM, Oman L, Shindell D, Levis S, Stenchikov G. Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? Journal of Geophysical Research. 2009;114(D10). doi:10.1029/2008JD011652
187.
Rampino MR, Ambrose SH. Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash. In: Special Paper 345: Volcanic Hazards and Disasters in Human Antiquity. Vol 345. Geological Society of America; 2000:71-82. doi:10.1130/0-8137-2345-0.71
188.
Michael R. Rampino and Stephen Self. Bottleneck in Human Evolution and the Toba Eruption. Science. 1955;262(5142). https://www.jstor.org/stable/2882944?Search=yes&resultItemClick=true&searchText=no%3A5142&searchText=AND&searchText=sn%3A00368075&searchText=AND&searchText=sp%3A1955&searchText=AND&searchText=vo%3A262&searchText=AND&searchText=year%3A1993&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dno%253A5142%2BAND%2Bsn%253A00368075%2BAND%2Bsp%253A1955%2BAND%2Bvo%253A262%2BAND%2Byear%253A1993%26amp%3Bymod%3DYour%2Binbound%2Blink%2Bdid%2Bnot%2Bhave%2Ban%2Bexact%2Bmatch%2Bin%2Bour%2Bdatabase.%2BBut%2Bbased%2Bon%2Bthe%2Belements%2Bwe%2Bcould%2Bmatch%252C%2Bwe%2Bhave%2Breturned%2Bthe%2Bfollowing%2Bresults.&ab_segments=0%2Fbasic_SYC-4946%2Fcontrol&refreqid=search-gateway%3A6e4dc1201cee6c8f7dab34dd5daf89e9&seq=1#metadata_info_tab_contents
189.
Wagner B, Leng MJ, Wilke T, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 2013;9(3):3307-3319. doi:10.5194/cpd-9-3307-2013
190.
Roberts RG, Storey M, Haslam M. Toba supereruption: Age and impact on East African ecosystems. Proceedings of the National Academy of Sciences. 2013;110(33):E3047-E3047. doi:10.1073/pnas.1308550110
191.
Smith, Eugene I. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Published online 2018. doi:10.17863/CAM.23506
192.
Smith EI, Jacobs Z, Johnsen R, et al. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature. 2018;555(7697):511-515. doi:10.1038/nature25967
193.
Oppenheimer S. A single southern exit of modern humans from Africa: Before or after Toba? Quaternary International. 2012;258:88-99. doi:10.1016/j.quaint.2011.07.049
194.
Lane, Christine S. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(20):8025-8029. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201600137554&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22supereruption%22&offset=0
195.
Petraglia MD, Ditchfield P, Jones S, Korisettar R, Pal JN. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International. 2012;258:119-134. doi:10.1016/j.quaint.2011.07.042
196.
Michael Petraglia, Ravi Korisettar, Nicole Boivin, Christopher Clarkson, Peter Ditchfield, Sacha Jones, Jinu Koshy, Marta Mirazón Lahr, Clive Oppenheimer, David Pyle, Richard Roberts, Jean-Luc Schwenninger, Lee Arnold and Kevin White. Middle Paleolithic Assemblages from the Indian Subcontinent before and after the Toba Super-Eruption. Science. 2007;317(5834). https://www.jstor.org/stable/20036656?seq=1#metadata_info_tab_contents
197.
Clarkson, Chris. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption.(Report). Quaternary International. 2014;258. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620226&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
198.
Jones SC. Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quaternary Research. 2010;73(2):336-350. doi:10.1016/j.yqres.2009.11.005
199.
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0047248498902196?token=7552FDE4AD153D8033B785131D7F8AC34E3E0ABA77DAB40EB3C9A449AD44583FDD787C3AF2592A72C48BA00A84A91473
200.
Williams MAJ, Ambrose SH, van der Kaars S, et al. Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009;284(3-4):295-314. doi:10.1016/j.palaeo.2009.10.009
201.
Haslam M, Petraglia M. Comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M.A.J. Williams, S.H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P.R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010;296(1-2):199-203. doi:10.1016/j.palaeo.2010.03.057
202.
Williams MAJ, Ambrose SH, der Kaars S van, et al. Reply to the comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal, P. R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010;296(1-2):204-211. doi:10.1016/j.palaeo.2010.05.043
203.
Haslam M, Clarkson C, Petraglia M, et al. The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3. Journal of Archaeological Science. 2010;37(12):3370-3384. doi:10.1016/j.jas.2010.07.034
204.
Petraglia , Michael D. Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary international. 2014;258:119-134. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201500210312&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
205.
Tim Appenzeller. Eastern odyssey: humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. Nature. 484(7396):24-27. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=2&docId=GALE%7CA289432159&docType=Article&sort=Relevance&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA289432159&searchId=R5&userGroupName=uniaber&inPS=true
206.
Louys, Julien. Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quaternary International. 2014;258. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620234&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
207.
Wagner B, Leng MJ, Wilke T, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 2013;9(3):3307-3319. doi:10.5194/cpd-9-3307-2013
208.
Huang, Cy. Cooling of the South China Sea by the Toba eruption and correlation with other climate proxies similar to 71,000 years ago. Geophysical Research Letters. 2014;28(20):3915-3918. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000171588000023&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
209.
Lane CS, Chorn BT, Johnson TC. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences. 2013;110(20):8025-8029. doi:10.1073/pnas.1301474110
210.
Nicholas J. G. Pearce. Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP Youngest Toba eruption. Current Science.:889-893. https://pure.aber.ac.uk/portal/en/publications/origin-of-ash-in-the-central-indian-ocean-basin-and-its-implication-for-the-volume-estimate-of-the-74000-year-bp-youngest-toba-eruption(9a911aa8-2ae3-4edd-8c2f-bae37585268f).html
211.
Quaternary International. 2012;258. https://www.sciencedirect.com/journal/quaternary-international/vol/258
212.
Paul Mellars, Kevin C. Gori, Martin Carr, Pedro A. Soares and Martin B. Richards. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(26). https://www.jstor.org/stable/42706546?seq=1#metadata_info_tab_contents
213.
Baldini JUL, Brown RJ, McElwaine JN. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Scientific Reports. 2015;5(1). doi:10.1038/srep17442
214.
Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith VC. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters. 2012;39(10):n/a-n/a. doi:10.1029/2012GL051605
215.
Allen JRM, Watts WA, Huntley B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International. 2000;73-74:91-110. doi:10.1016/S1040-6182(00)00067-7
216.
Fitzsimmons KE, Hambach U, Veres D, Iovita R. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE. 2013;8(6). doi:10.1371/journal.pone.0065839
217.
Woo JYL, Kilburn CRJ. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. Journal of Geophysical Research. 2010;115(B12). doi:10.1029/2009JB006913
218.
Fedele FG, Giaccio B, Isaia R, Orsi G. Ecosystem Impact of the Campanian Ignimbrite Eruption in Late Pleistocene Europe. Quaternary Research. 2002;57(3):420-424. doi:10.1006/qres.2002.2331
219.
Fedele FG, Giaccio B, Hajdas I. Timescales and cultural process at 40,000BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution. 2008;55(5):834-857. doi:10.1016/j.jhevol.2008.08.012
220.
Pyle DM, Ricketts GD, Margari V, et al. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews. 2006;25(21-22):2713-2728. doi:10.1016/j.quascirev.2006.06.008
221.
The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0033589411000251?token=4E4EEC6191F39F42814BC42AAD9CF316D15FA910CEF7A1DE70CB8B236CE4BA69D520AD582BFAB2D648944AE366D7D6DD
222.
Hoffecker JF, Holliday VT, Anikovich MV, et al. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution. 2008;55(5):858-870. doi:10.1016/j.jhevol.2008.08.018
223.
Andrei A. Sinitsyn. A Palaeolithic `Pompeii’ at Kostenki, Russia. (Research). Antiquity. 77(295):9-15. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA100484921&docType=Article&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA100484921&searchId=R1&userGroupName=uniaber&inPS=true
224.
Kathryn E Fitzsimmons. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE. 2013;8(6). https://doaj.org/article/d962f3c36bb8435990b157d3376599d8
225.
Mellars P. The Neanderthal Problem Continued. Current Anthropology. 1999;40(3):341-364. doi:10.1086/200024
226.
John Lowe, Nick Barton, Simon Blockley, Christopher Bronk Ramsey, Victoria L. Cullen, William Davies, Clive Gamble, Katharine Grant, Mark Hardiman, Rupert Housley, Christine S. Lane, Sharen Lee, Mark Lewis, Alison MacLeod, Martin Menzies, Wolfgang Müller, Mark Pollard, Catherine Price, Andrew P. Roberts, Eelco J. Rohling, Chris Satow, Victoria C. Smith, Chris B. Stringer, Emma L. Tomlinson, Dustin White, Paul Albert, Ilenia Arienzo, Graeme Barker, Dušan Borić, Antonio Carandente, Lucia Civetta, Catherine Ferrier, Jean-Luc Guadelli, Panagiotis Karkanas, Margarita Koumouzelis, Ulrich C. Müller, Giovanni Orsi, Jörg Pross, Mauro Rosi, Ljiljiana Shalamanov-Korobar, Nikolay Sirakov and Polychronis C. Tzedakis. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(34). https://www.jstor.org/stable/41700966?seq=1#metadata_info_tab_contents
227.
Black BA, Neely RR, Manga M. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology. 2015;43(5):411-414. doi:10.1130/G36514.1
228.
The timing and spatiotemporal patterning of Neanderthal disappearance. Nature. 512(7514):306-310. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A379640969&v=2.1&it=r
229.
Paul Mellars. The earliest modern humans in Europe: the reanalysis of findings from two archaeological sites calls for a reassessment of when modern humans settled in Europe, and of Neanderthal cultural achievements. Nature. 479(7374):483-486. https://go.gale.com/ps/i.do?&id=GALE|A274027588&v=2.1&u=uniaber&it=r&p=AONE&sw=w
230.
Mellars P. Neanderthals and the modern human colonization of Europe. Nature. 2004;432(7016):461-465. doi:10.1038/nature03103
231.
Paul Mellars and Jennifer C. French. Tenfold Population Increase in Western Europe at the Neandertal—to—Modern Human Transition. Science. 2011;333(6042). https://www.jstor.org/stable/27978352?seq=1#metadata_info_tab_contents
232.
Mystery eruption traced to dangerous Italian volcano : Research Highlights. https://www.nature.com/articles/d41586-019-01462-6
233.
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
234.
Michael Staubwasser. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences. 2018;115(37):9116-9121. doi:10.1073/pnas.1808647115
235.
João Zilhão. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology: Issues, News, and Reviews. 2006;15(5):183-195. doi:10.1002/evan.20110
236.
M. Damaschke,R. Sulpizio,G. Zanchetta,B. Wagner,N. Nowaczyk,J. Rethemeyer. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate of the Past. 2013;9(1):267-267. https://go.gale.com/ps/i.do?id=GALE%7CA481436213&v=2.1&u=uniaber&it=r&p=AONE&sw=w
237.
Villa P, Pollarolo L, Conforti J, et al. From Neandertals to modern humans: New data on the Uluzzian. PLOS ONE. 2018;13(5). doi:10.1371/journal.pone.0196786
238.
Mannella G, Giaccio B, Zanchetta G, et al. Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews. 2019;210:190-210. doi:10.1016/j.quascirev.2019.02.032
239.
Garcia Garriga J, Martínez Molina K, Baena Preysler J. Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory. 2012;25(2):81-121. doi:10.1007/s10963-012-9057-y
240.
Bond DPG, Grasby SE. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;478:3-29. doi:10.1016/j.palaeo.2016.11.005
241.
Lindström S, Sanei H, van de Schootbrugge B, et al. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances. 2019;5(10). doi:10.1126/sciadv.aaw4018
242.
VAN DE SCHOOTBRUGGE B, WIGNALL PB. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine. 2016;153(2):332-354. doi:10.1017/S0016756815000643
243.
Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China - Zhang et al., accepted.pdf. http://eprints.whiterose.ac.uk/128432/1/Zhang%20et%20al.%2C%20accepted.pdf
244.
Paul E. Olsen. Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science. 284(5414):604-605. https://go.gale.com/ps/i.do?&id=GALE|A54552300&v=2.1&u=uniaber&it=r&p=AONE&sw=w
245.
Sobolev SV, Sobolev AV, Kuzmin DV, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 2011;477(7364):312-316. doi:10.1038/nature10385
246.
Wignall PB. Large igneous provinces and mass extinctions. Earth-Science Reviews. 2001;53(1-2):1-33. doi:10.1016/S0012-8252(00)00037-4
247.
Wignall P. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements. 2005;1(5):293-297. doi:10.2113/gselements.1.5.293
248.
Ernst RE, Buchan KL, Campbell IH. Frontiers in large igneous province research. Lithos. 2005;79(3-4):271-297. doi:10.1016/j.lithos.2004.09.004
249.
Rampino MR, Caldeira K. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. International Journal of Earth Sciences. 2018;107(2):601-606. doi:10.1007/s00531-017-1513-6
250.
Saunders AD. Large Igneous Provinces: Origin and Environmental Consequences. Elements. 2005;1(5):259-263. doi:10.2113/gselements.1.5.259
251.
Sobolev SV, Sobolev AV, Kuzmin DV, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 2011;477(7364):312-316. doi:10.1038/nature10385
252.
Grattan J. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos. 2005;79(3-4):343-353. doi:10.1016/j.lithos.2004.09.006
253.
Richard Stone. BACK FROM THE DEAD: The once-moribund idea that volcanism helped kill off the dinosaurs gains new credibility. Science. 2014;346(6215). https://www.jstor.org/stable/24745481?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9Mw%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
254.
Steven M. Holland. Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(30). https://www.jstor.org/stable/26470935?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3Frefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
255.
Grasby SE, Them TR, Chen Z, Yin R, Ardakani OH. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews. 2019;196. doi:10.1016/j.earscirev.2019.102880
256.
Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters. 1999;166(3-4):177-195. doi:10.1016/S0012-821X(98)00282-9
257.
Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. http://libra.msra.cn/Publication/5357742/age-of-the-emeishan-flood-magmatism-and-relations-to-permian-triassic-boundary-events
258.
Black BA, Hauri EH, Elkins-Tanton LT, Brown SM. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters. 2014;394:58-69. doi:10.1016/j.epsl.2014.02.057
259.
Black BA, Lamarque JF, Shields CA, Elkins-Tanton LT, Kiehl JT. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology. 2014;42(1):67-70. doi:10.1130/G34875.1
260.
Grasby SE, Sanei H, Beauchamp B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience. 2011;4(2):104-107. doi:10.1038/ngeo1069
261.
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(1). https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
262.
Percival LME, Witt MLI, Mather TA, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters. 2015;428:267-280. doi:10.1016/j.epsl.2015.06.064
263.
Cui Y, Kump LR. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews. 2015;149:5-22. doi:10.1016/j.earscirev.2014.04.007
264.
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(1). https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
265.
Ponomarenko AG. Insects during the time around the Permian—Triassic crisis. Paleontological Journal. 2016;50(2):174-186. doi:10.1134/S0031030116020052
266.
JUN SHEN, YONG LEI, THOMAS J. ALGEO, QINGLAI FENG, THOMAS SERVAIS, JIANXIN YU and LIAN ZHOU. VOLCANIC EFFECTS ON MICROPLANKTON DURING THE PERMIAN-TRIASSIC TRANSITION (SHANGSI AND XINMIN, SOUTH CHINA). PALAIOS. 2013;28(7). https://www.jstor.org/stable/43683731?seq=1#metadata_info_tab_contents
267.
Lawrence M. E. Percival, Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather and Jessica H. Whiteside. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(30). https://www.jstor.org/stable/26486132?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9NA%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
268.
Bercovici A, Cui Y, Forel MB, Yu J, Vajda V. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences. 2015;98:225-246. doi:10.1016/j.jseaes.2014.11.016
269.
Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang and Xulong Lai. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science. 2012;338(6105). https://www.jstor.org/stable/41704126?seq=1#metadata_info_tab_contents
270.
Keller G, Bhowmick PK, Upadhyay H, et al. Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India. 2011;78(5):399-428. doi:10.1007/s12594-011-0107-3
271.
Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S003101821730069X?token=9E59368BF1A480D19C41B03216AE62CFB032CE517B33FD17B2D4C8AFC4CD0C3014B95F72AD1F4E87F5D05888E6623F45
272.
Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0012821X19304133?token=9B50E6970E7293FB00EDE636D74F62EB0BA45C33FA245DAD1476902AD1287E896D7A6219235DCC54A359E42D94D895D0
273.
Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction. https://reader.elsevier.com/reader/sd/pii/S1040618206001455?token=51068B2B3A216D1053DAF06EDA03B11F9254BA3DB2935BA4E0499B93AA5E346C44F82B2D1D119DBDBB3155E2A46E61D1
274.
Negi JG, Agrawal PK, Pandey OP, Singh AP. A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors. 1993;76(3-4):189-197. doi:10.1016/0031-9201(93)90011-W
275.
Rampino MR. Relationship between impact-crater size and severity of related extinction episodes. Earth-Science Reviews. 2020;201. doi:10.1016/j.earscirev.2019.102990
276.
Multiple impacts across the Cretaceous–Tertiary boundary. http://geoweb.princeton.edu/research/Paleontology/Keller_et_al._ESR_03.pdf
277.
Tandon SK. Records of the influence of Deccan volcanism on contemporary sedimentary environments in Central India. Sedimentary Geology. 2002;147(1-2):177-192. doi:10.1016/S0037-0738(01)00196-8
278.
Schulte P, Alegret L, Arenillas I, et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science. 2010;327(5970):1214-1218. doi:10.1126/science.1177265
279.
Keller G, Sahni A, Bajpai S. Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences. 2009;34(5):709-728. doi:10.1007/s12038-009-0059-6
280.
Wacey D, Saunders M, Cliff J, et al. Geochemistry and nano-structure of a putative ∼3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Research. 2014;249:1-12. doi:10.1016/j.precamres.2014.04.016
281.
Maltman C, Walter G, Yurkov V. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLOS ONE. 2016;11(2). doi:10.1371/journal.pone.0149812
282.
Hodel F, Macouin M, Trindade RIF, et al. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications. 2018;9(1). doi:10.1038/s41467-018-03890-w
283.
Reigstad LJ, Jorgensen SL, Lauritzen SE, Schleper C, Urich T. Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology. 2011;11(7):665-678. doi:10.1089/ast.2010.0551
284.
Earth-Science Reviews. 2015;149. https://www.sciencedirect.com/journal/earth-science-reviews/vol/149
285.
GLIKSON A. Asteroid/comet impact clusters, flood basalts and mass extinctions: Significance of isotopic age overlaps. Earth and Planetary Science Letters. 2005;236(3-4):933-937. doi:10.1016/j.epsl.2005.05.007
286.
Fraser NC, Sues HD. The beginning of the ‘Age of Dinosaurs’: a brief overview of terrestrial biotic changes during the Triassic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2010;101(3-4):189-200. doi:10.1017/S1755691011020019
287.
Percival LME, Ruhl M, Hesselbo SP, Jenkyns HC, Mather TA, Whiteside JH. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences. 2017;114(30):7929-7934. doi:10.1073/pnas.1705378114
288.
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;478:30-52. doi:10.1016/j.palaeo.2017.03.014
289.
Fantasia A, Adatte T, Spangenberg JE, Font E. Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology. 2016;441:165-180. doi:10.1016/j.palaeo.2015.06.032
290.
Grattan J, Torrence R, World Archaeological Congress. Living under the Shadow: Cultural Impacts of Volcanic Eruptions. Vol 53. Left Coast Press; 2007. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3735715500002418&institutionId=2418&customerId=2415
291.
Cashman KV, Giordano G. Volcanoes and human history. Journal of Volcanology and Geothermal Research. 2008;176(3):325-329. doi:10.1016/j.jvolgeores.2008.01.036
292.
Grattan J. Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization. Quaternary International. 2006;151(1):10-18. doi:10.1016/j.quaint.2006.01.019
293.
Riede F. Towards a science of past disasters. Natural Hazards. 2014;71(1):335-362. doi:10.1007/s11069-013-0913-6
294.
Social responses to volcanic eruptions: A review of key concepts | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618217315045?token=D8AE8C3A6359753D6D0FE577386A061826A84D07B8E6C82C0D1C416542362EBE8BEDAA531DDEE60B0A707677761F2FF5
295.
Volcanic activity and human society | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215008782?token=4BFF11422C65A4796BA4C9B85C94A0B7DE2CE3EC2872FBD9AED51E61C6AE30A06AEF7CA8BF529763A550F5028E303F01
296.
Zanchetta G, Bini M, Di Vito MA, Sulpizio R, Sadori L. Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quaternary International. 2019;499:186-194. doi:10.1016/j.quaint.2018.06.012
297.
Volcanic disasters and agricultural intensification: A case study from the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821100187X?token=957DD20CC0E7AB3C83F5CEA197075F2CFA510A05C918DD7CD29D1BC710AD7142C406CBEA0ED0B6CED53163B817079955
298.
Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214002535?token=BAEB0FFE44FA5EFE4CB35DA787B0AB116092B6A013138A4AF71E913F0DDC8C2D1065BD17188411ABC2C390212810942E
299.
Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214004625?token=929B4CAB03EC49E56F14B90156292EAAF6E8D54F7094F7B6CF5AE121276CECE216DD6C7A1DA67398981B648F9A2252DA
300.
Evidence of cultural responses to the impact of the Mazama ash fall from deeply stratified archaeological sites in southern Alberta, Canada | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214005710?token=2963043EA7F872BCF96AAEA166AE865544D5787E1296D650809F7892FA0844B6E60DA91320E7AF252ADE63CD2B04B40D
301.
Prehistoric human responses to volcanic tephra fall events in the Ust-Kamchatsk region, Kamchatka Peninsula (Kamchatsky Krai, Russian Federation) during the middle to late Holocene (6000-500 cal BP) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215007090?token=5BC28A2B2576D0F5B208781B84A8A623845C2F735E442C62405C1B8234FC4D52B49F46FC00933D3242D0C641C1AA99E2
302.
Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215013464?token=C6435D598538AB261293887A9839D0F615EA3E661366B9746077BA40CE4E82A1CAE480BA177CF0EA3DA60D027BDE68F2
303.
Torrence R, Grattan J. Natural Disasters and Cultural Change. Vol One world archaeology. Routledge; 2002. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037231330002418&institutionId=2418&customerId=2415
304.
McGuire B. The Archaeology of Geological Catastrophes. Vol Geological Society special publication. Geological Society; 2000.
305.
Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-00957-y
306.
Chester DK, Duncan AM, Dibben CJL. The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. Journal of Volcanology and Geothermal Research. 2008;172(3-4):216-228. doi:10.1016/j.jvolgeores.2007.12.009
307.
Torrence R. Social responses to volcanic eruptions: A review of key concepts. Quaternary International. 2019;499:258-265. doi:10.1016/j.quaint.2018.02.033
308.
Riede F. Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quaternary International. 2019;499:266-277. doi:10.1016/j.quaint.2018.01.027
309.
Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo and Michael F. Sheridan. The Avellino 3780-yr-B.P. Catastrophe as a Worst-Case Scenario for a Future Eruption at Vesuvius. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(12). https://www.jstor.org/stable/30048947?seq=1#metadata_info_tab_contents
310.
Mastrolorenzo G, Pappalardo L. Hazard assessment of explosive volcanism at Somma-Vesuvius. Journal of Geophysical Research. 2010;115(B12). doi:10.1029/2009JB006871
311.
Haraldur Sigurdsson, Stanford Cashdollar and Stephen R. J. Sparks. The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology. 1982;86(1):39-51. http://www.jstor.org/stable/504292
312.
Albore Livadie C, Pearce M, Delle Donne M, Pizzano N. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 2019;499:205-220. doi:10.1016/j.quaint.2018.03.035
313.
Milia A, Raspini A, Torrente MM. The dark nature of Somma-Vesuvius volcano: Evidence from the ∼3.5ka B.P. Avellino eruption. Quaternary International. 2007;173-174:57-66. doi:10.1016/j.quaint.2007.03.001
314.
The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618218301228?token=79D7A12B29C1F81D9D3A0F58F90748B005D19DBD1698C5B59903C6A4FA58AAF79F27FA7FF61D9E3F4E5D31ACD812EFE4
315.
Di Vito MA, Talamo P, de Vita S, Rucco I, Zanchetta G, Cesarano M. Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quaternary International. 2019;499:231-244. doi:10.1016/j.quaint.2018.03.021
316.
Convertito V, Zollo A. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology. 2011;73(6):767-783. doi:10.1007/s00445-011-0455-2
317.
Gurioli L, Sulpizio R, Cioni R, et al. Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bulletin of Volcanology. 2010;72(9):1021-1038. doi:10.1007/s00445-010-0379-2
318.
Senatore MR, Ciarallo A, Stanley JD. Pompeii Damaged by Volcaniclastic Debris Flows Triggered Centuries Prior to the 79 A.D. Vesuvius Eruption. Geoarchaeology. 2014;29(1):1-15. doi:10.1002/gea.21458
319.
Mastrolorenzo G, Palladino DM, Vecchio G, Taddeucci J. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. Journal of Volcanology and Geothermal Research. 2002;113(1-2):19-36. doi:10.1016/S0377-0273(01)00248-7
320.
Albore Livadie C, Pearce M, Delle Donne M, Pizzano N. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 2019;499:205-220. doi:10.1016/j.quaint.2018.03.035
321.
Driessen J. The Santorini eruption. An archaeological investigation of its distal impacts on Minoan Crete. Quaternary International. 2019;499:195-204. doi:10.1016/j.quaint.2018.04.019
322.
Monaghan JJ, Bicknell PJ, Humble RJ. Volcanoes, Tsunamis and the demise of the Minoans. Physica D: Nonlinear Phenomena. 1994;77(1-3):217-228. doi:10.1016/0167-2789(94)90135-X
323.
Pearson CL, Brewer PW, Brown D, et al. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances. 2018;4(8). doi:10.1126/sciadv.aar8241
324.
Athanassas CD, Modis K, Alçiçek MC, Theodorakopoulou K. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 2018;23(2):160-176. doi:10.1080/14614103.2017.1288885
325.
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
326.
Paolo Cherubini. The olive-branch dating of the Santorini eruption. Antiquity. 88(339):267-274. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA363102251&docType=Report&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA363102251&searchId=R1&userGroupName=uniaber&inPS=true
327.
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece) - srep12243.pdf. https://www.nature.com/articles/srep12243.pdf
328.
Panagiotakopulu E, Higham T, Sarpaki A, Buckland P, Doumas C. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften. 2013;100(7):683-689. doi:10.1007/s00114-013-1068-8
329.
Sturt W. Manning. Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity. 88(342):1164-1180. https://go.gale.com/ps/i.do?&id=GALE|A398627713&v=2.1&u=uniaber&it=r&p=AONE&sw=w
330.
Medical papyri describe the effects of the Santorinieruption on human health, and date the eruptionto August 1603–March 1601 BC. https://reader.elsevier.com/reader/sd/pii/S0306987706005573?token=DAEB1FCD9B957C164CCFDE1E2DF78C6E4CCB706CF0CA20256DFBEEA257D11E5BFABC31BF10FD91E9032E5D494AC1EE0A
331.
Athanassas CD, Modis K, Alçiçek MC, Theodorakopoulou K. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 2018;23(2):160-176. doi:10.1080/14614103.2017.1288885
332.
Knappett, CarlRivers, RayEvans, Tim. The Theran eruption and Minoan Palatial Collapse. 85(9):1008-1023. https://search.proquest.com/docview/896272713/fulltextPDF/3F1AFA67A52F429DPQ/1?accountid=14783
333.
Bottema S, Sarpaki A. Environmental change in Crete: a 9000-year record of Holocene vegetation                history and the effect of the Santorini eruption. The Holocene. 2003;13(5):733-749. doi:10.1191/0959683603hl659rp
334.
Speleothems as sensitive recorders of volcanic eruptions – the Bronze Age Minoan eruption recorded in a stalagmite from Turkey | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0012821X14000570?token=2ABFE04AD3F8AB8DC1684D2DA9B5701D6D87666872A5151EB04D3C6DD789F7DAD3721FDAED98C0B86CCC361E9E92334D
335.
Six medical papyri describe the effect of Santorini’s volcanic ash. https://reader.elsevier.com/reader/sd/pii/S0306987706000491?token=13233F3D8053237EAA0B5D4307D4EF02C39F56EAC3CF666212510A196E0D3ED2628EFCCD16403A858298DDD537A22B50
336.
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 2006;66(1):193-196. doi:10.1016/j.mehy.2005.08.052
337.
Periáñez R, Abril JM. Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. Journal of Marine Systems. 2014;139:91-102. doi:10.1016/j.jmarsys.2014.05.016
338.
Modeling cultural responses to volcanic disaster in the ancient Jama-Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215008794?token=C280BD04B409C9B696DD4724F4EFBFC8BD31FD9BFFED653A8B81C65448BD2DD0D6031E8C65D26942772EC00E7E72596D
339.
Abbott DA, Sheets PD, Cooper J. Surviving Sudden Environmental Change: Answers from Archaeology. 1st ed. University Press of Colorado; 2012. https://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=5195538870002418&institutionId=2418&customerId=2415
340.
Hartmann WK, Malin M, McEwen A, et al. Evidence for recent volcanism on Mars from crater counts. Nature. 1999;397(6720):586-589. doi:10.1038/17545
341.
Cousins CR, Crawford IA. Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology. 2011;11(7):695-710. doi:10.1089/ast.2010.0550
342.
Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research. 1992;97(E8). doi:10.1029/92JE01273
343.
Terrestrial Volcanism in Space and Time - Annual Review of Earth and Planetary Sciences, 21(1):427. http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.21.050193.002235
344.
Lopes RMC, Mitchell KL, Williams D, Mitri G. Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. In: What Is a Volcano?. Vol Special paper. Geological Society of America; :11-30. doi:10.1130/2010.2470(02)
345.
Volcanism and tectonics on Venus. http://www.es.ucsc.edu/~fnimmo/website/paper5.pdf
346.
Strom RG, Schaber GG, Dawson DD. The global resurfacing of Venus. Journal of Geophysical Research. 1994;99(E5). doi:10.1029/94JE00388
347.
Hints of a volcanically active exomoon. Space Daily. Published online 2011. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofg597833465&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,exo%20volcanism&offset=0
348.
van Summeren J, Conrad CP, Gaidos E. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS. The Astrophysical Journal. 2011;736(1). doi:10.1088/2041-8205/736/1/L15
349.
Parnell J. Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. International Journal of Astrobiology. 2005;4(3-4):175-186. doi:10.1017/S1473550405002715
350.
Kaltenegger L, Henning WG, Sasselov DD. DETECTING VOLCANISM ON EXTRASOLAR PLANETS. The Astronomical Journal. 2010;140(5):1370-1380. doi:10.1088/0004-6256/140/5/1370
351.
Buizert C, Sigl M, Severi M, et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature. 2018;563(7733):681-685. doi:10.1038/s41586-018-0727-5
352.
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 2006;66(1):193-196. doi:10.1016/j.mehy.2005.08.052
353.
Thouret JC, Lavigne F, Kelfoun K, Bronto S. Toward a revised hazard assessment at Merapi volcano, Central Java. Journal of Volcanology and Geothermal Research. 2000;100(1-4):479-502. doi:10.1016/S0377-0273(00)00152-9
354.
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;478:30-52. doi:10.1016/j.palaeo.2017.03.014