. Atmospheric and environmental effects of the 1783-­‐1784 Laki eruption: a review and reassessment. (n.d.). http://seismo.berkeley.edu/~manga/LIPS/thordarson03.pdf
A. Guevara-Murua. (n.d.). Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past, 10(5), 1707–1707. https://go.gale.com/ps/i.do?&id=GALE|A481428553&v=2.1&u=uniaber&it=r&p=AONE&sw=w
A new approach to assess long-­‐term lava flow hazard and risk using GIS and low-­‐cost remote sensing: the case of Mount Cameroon, West Africa. (n.d.). http://www.tandfonline.com/doi/pdf/10.1080/01431160802167873
Abbott, D. A., Sheets, P. D., & Cooper, J. (2012). Surviving Sudden Environmental Change: Answers from Archaeology (1st ed). University Press of Colorado. https://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=5195538870002418&institutionId=2418&customerId=2415
Abdullah, Mikrajuddin. (2012). Interpretation of Past Kingdoms Poems to Reconstruct the Physical Phenomena in the Past: Case of Great Tambora Eruption 1815. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_arxiv1609.09225&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
After Tambora. (20150411). The Economist. https://www.economist.com/news/briefing/21647958-two-hundred-years-ago-most-powerful-eruption-modern-history-made-itself-felt-around
Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. (n.d.). http://libra.msra.cn/Publication/5357742/age-of-the-emeishan-flood-magmatism-and-relations-to-permian-triassic-boundary-events
Alan Robock. (2002). The Climatic Aftermath. Science, 295(5558). https://www.jstor.org/stable/3075904?seq=1#metadata_info_tab_contents
Albore Livadie, C., Pearce, M., Delle Donne, M., & Pizzano, N. (2019a). The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International, 499, 205–220. https://doi.org/10.1016/j.quaint.2018.03.035
Albore Livadie, C., Pearce, M., Delle Donne, M., & Pizzano, N. (2019b). The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International, 499, 205–220. https://doi.org/10.1016/j.quaint.2018.03.035
Alexander, K. E., Leavenworth, W. B., Willis, T. V., Hall, C., Mattocks, S., Bittner, S. M., Klein, E., Staudinger, M., Bryan, A., Rosset, J., Carr, B. H., & Jordaan, A. (2017). Tambora and the mackerel year: Phenology and fisheries during an extreme climate event. Science Advances, 3(1). https://doi.org/10.1126/sciadv.1601635
Allen, J. R. M., Watts, W. A., & Huntley, B. (2000). Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International, 73–74, 91–110. https://doi.org/10.1016/S1040-6182(00)00067-7
Allibone, R., Cronin, S. J., Charley, D. T., Neall, V. E., Stewart, R. B., & Oppenheimer, C. (2012). Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health, 34(2), 155–170. https://doi.org/10.1007/s10653-010-9338-2
Alloway, B. V., Andreastuti, S., Setiawan, R., Miksic, J., & Hua, Q. (2017). Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago. Quaternary Science Reviews, 155, 86–99. https://doi.org/10.1016/j.quascirev.2016.11.020
Alwyn Scarth. (n.d.). La catastrophe: Mount Pelée and the destruction of Saint-Pierre, Martinique - Alwyn Scarth - Google Books. Terra, 2002. http://books.google.co.uk/books/about/La_catastrophe.html?id=SxROAQAAIAAJ&redir_esc=y
Andreastuti, S., Paripurno, E., Gunawan, H., Budianto, A., Syahbana, D., & Pallister, J. (2019). Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research, 382, 298–310. https://doi.org/10.1016/j.jvolgeores.2017.01.022
Andrei A. Sinitsyn. (n.d.). A Palaeolithic `Pompeii’ at Kostenki, Russia. (Research). Antiquity, 77(295), 9–15. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA100484921&docType=Article&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA100484921&searchId=R1&userGroupName=uniaber&inPS=true
Angela K Diefenbach. (2015). Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology, 4(1). https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-015-0024-z
Anja Schmidt. (n.d.). https://www.researchgate.net/profile/Anja_Schmidt
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. (2011a). Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 15710–15715. http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. (2011b). Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 15710–15715. http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
Anja Schmidt, Claire S. Witham, Nicolas Theys, Nigel A. D. Richards, Thorvaldur Thordarson, Kate Szpek, Wuhu Feng, Matthew C. Hort, Alan M. Woolley, Andrew R. Jones, Alison L. Redington, Ben T. Johnson, Chris L. Hayward, Kenneth S. Carslaw. (2014). Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research: Atmospheres, 119(24), 14,180-14,196. https://doi.org/10.1002/2014JD022070
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. (2015a). Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres, 120(18), 9739–9757. https://doi.org/10.1002/2015JD023638
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. (2015b). Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres, 120(18), 9739–9757. https://doi.org/10.1002/2015JD023638
Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R., & Newman, P. A. (2012). Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. Journal of Geophysical Research: Atmospheres, 117(D6), n/a-n/a. https://doi.org/10.1029/2011JD016968
Arfeuille, F., Weisenstein, D., Mack, H., Rozanov, E., Peter, T., & Brönnimann, S. (2014). Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past, 10(1), 359–375. https://doi.org/10.5194/cp-10-359-2014
Armijos, M. T., Phillips, J., Wilkinson, E., Barclay, J., Hicks, A., Palacios, P., Mothes, P., & Stone, J. (2017). Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change, 45, 217–226. https://doi.org/10.1016/j.gloenvcha.2017.06.002
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions - Schmidt et al, 2014, JGR, Assessing_SO2_aviation_hazards.pdf. (n.d.). http://eprints.whiterose.ac.uk/82709/1/Schmidt%20et%20al%2C%202014%2C%20JGR%2C%20Assessing_SO2_aviation_hazards.pdf
Athanassas, C. D., Modis, K., Alçiçek, M. C., & Theodorakopoulou, K. (2018a). Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology, 23(2), 160–176. https://doi.org/10.1080/14614103.2017.1288885
Athanassas, C. D., Modis, K., Alçiçek, M. C., & Theodorakopoulou, K. (2018b). Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology, 23(2), 160–176. https://doi.org/10.1080/14614103.2017.1288885
Bakkour, D., Enjolras, G., Thouret, J.-C., Kast, R., Mei, E. T. W., & Prihatminingtyas, B. (2015). The adaptive governance of natural disaster systems: Insights from the 2010 mount Merapi eruption in Indonesia. International Journal of Disaster Risk Reduction, 13, 167–188. https://doi.org/10.1016/j.ijdrr.2015.05.006
Baldini, J. U. L., Brown, R. J., & McElwaine, J. N. (2015). Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Scientific Reports, 5(1). https://doi.org/10.1038/srep17442
Balkanski, Y., Menut, L., Garnier, E., Wang, R., Evangeliou, N., Jourdain, S., Eschstruth, C., Vrac, M., & Yiou, P. (2018). Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34228-7
Barberi, F., Carapezza, M. L., Valenza, M., & Villari, L. (1993). The control of lava flow during the 1991–1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research, 56(1–2), 1–34. https://doi.org/10.1016/0377-0273(93)90048-V
Barberi, F., Martini, M., & Rosi, M. (1990). Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. Journal of Volcanology and Geothermal Research, 42(1–2), 1–12. https://doi.org/10.1016/0377-0273(90)90066-O
Barclay, J., Few, R., Armijos, M. T., Phillips, J. C., Pyle, D. M., Hicks, A., Brown, S. K., & Robertson, R. E. A. (2019). Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00205
Barclay, J., Haynes, K., Mitchell, T., Solana, C., Teeuw, R., Darnell, A., Crosweller, H. S., Cole, P., Pyle, D., Lowe, C., Fearnley, C., & Kelman, I. (2008). Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society, London, Special Publications, 305(1), 163–177. https://doi.org/10.1144/SP305.14
Behringer, W., & Selwyn, P. E. (2019). Tambora and the year without a summer: how a volcano plunged the world into crisis. Polity.
Bercovici, A., Cui, Y., Forel, M.-B., Yu, J., & Vajda, V. (2015). Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences, 98, 225–246. https://doi.org/10.1016/j.jseaes.2014.11.016
Bethke, I., Outten, S., Otterå, O. H., Hawkins, E., Wagner, S., Sigl, M., & Thorne, P. (2017). Potential volcanic impacts on future climate variability. Nature Climate Change, 7(11), 799–805. https://doi.org/10.1038/nclimate3394
Biass, S., & Bonadonna, C. (2013a). A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards, 65(1), 477–495. https://doi.org/10.1007/s11069-012-0378-z
Biass, S., & Bonadonna, C. (2013b). A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards, 65(1), 477–495. https://doi.org/10.1007/s11069-012-0378-z
Black, B. A., Hauri, E. H., Elkins-Tanton, L. T., & Brown, S. M. (2014). Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters, 394, 58–69. https://doi.org/10.1016/j.epsl.2014.02.057
Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T., & Kiehl, J. T. (2014). Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1), 67–70. https://doi.org/10.1130/G34875.1
Black, B. A., Neely, R. R., & Manga, M. (2015). Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology, 43(5), 411–414. https://doi.org/10.1130/G36514.1
Bond, D. P. G., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005
Bottema, S., & Sarpaki, A. (2003). Environmental change in Crete: a 9000-year record of Holocene vegetation                history and the effect of the Santorini eruption. The Holocene, 13(5), 733–749. https://doi.org/10.1191/0959683603hl659rp
Brá. (2012). Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Climate of the Past, 12(6). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa503206931&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
Brázdil, R., Demarée, G. R., Deutsch, M., Garnier, E., Kiss, A., Luterbacher, J., Macdonald, N., Rohr, C., Dobrovolný, P., Kolář, P., & Chromá, K. (2010). European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology, 100(1–2), 163–189. https://doi.org/10.1007/s00704-009-0170-5
Brian J. Soden. (n.d.). Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. (Reports). Science, 296(5568), 727–731. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A86062245&v=2.1&it=r
Brian Zambri, Allegra N. LeGrande, Alan Robock, Joanna Slawinska. (2017). Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres, 122(15), 7971–7989. https://doi.org/10.1002/2017JD026728
Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J., McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K., Fujita, S., Motoyama, H., Hirabayashi, M., Uemura, R., Stenni, B., Parrenin, F., He, F., Fudge, T. J., & Steig, E. J. (2018). Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 563(7733), 681–685. https://doi.org/10.1038/s41586-018-0727-5
Campbell, B. M. S. (2017). GLOBAL CLIMATES, THE 1257 MEGA-ERUPTION OF SAMALAS VOLCANO, INDONESIA, AND THE ENGLISH FOOD CRISIS OF 1258. Transactions of the Royal Historical Society, 27, 87–121. https://doi.org/10.1017/S0080440117000056
Cao, Shuji. (2012). Mt. Tambora, Climatic Changes, and China’s Decline in the Nineteenth Century. Journal of World History, 23(3), 587–607. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_museS1527805012300043&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
Cashman, K. V., & Giordano, G. (2008). Volcanoes and human history. Journal of Volcanology and Geothermal Research, 176(3), 325–329. https://doi.org/10.1016/j.jvolgeores.2008.01.036
Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0277379119305712?token=963CD51172E1708D01C09E5C4667F89C6CE9FD3F957B0177EC133AC6F6B960CF331F3C2E140EE61CE2D2AC8BB5E2FB1F
Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618214004625?token=929B4CAB03EC49E56F14B90156292EAAF6E8D54F7094F7B6CF5AE121276CECE216DD6C7A1DA67398981B648F9A2252DA
Chester, D. K. (1994). Volcanoes and society. E. Arnold.
Chester, D. K., Dibben, C. J. L., & Duncan, A. M. (2002). Volcanic hazard assessment in western Europe. Journal of Volcanology and Geothermal Research, 115(3–4), 411–435. https://doi.org/10.1016/S0377-0273(02)00210-X
Chester, D. K., Duncan, A. M., & Dibben, C. J. L. (2008). The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. Journal of Volcanology and Geothermal Research, 172(3–4), 216–228. https://doi.org/10.1016/j.jvolgeores.2007.12.009
Chester, D. K., Duncan, A. M., & Sangster, H. (2012). Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning. Journal of Volcanology and Geothermal Research, 225–226, 65–80. https://doi.org/10.1016/j.jvolgeores.2012.02.017
Clarkson, Chris. (2014). Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption.(Report). Quaternary International, 258. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620226&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
Cole-Dai, J., Ferris, D., Lanciki, A., Savarino, J., Baroni, M., & Thiemens, M. H. (2009). Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters, 36(22). https://doi.org/10.1029/2009GL040882
Combining historical and 14C data to assess pyroclastic density current hazards in BaNos city near Tungurahua volcano (Ecuador) | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618215006527?token=4101E87BDEF7DB65923F9AA1B5FC04E275004933C8457E4B5DFF9A5C5FF6FA744CA133B014E81D6C792BA3B7CC418437
Communicating eruption and hazard forecasts on Vesuvius, Southern Italy. (n.d.). http://www.ucl.ac.uk/volcanoscope/files/pdf%20files/Solana%20et%20al_Hazard%20Perception_Vesuvius_JVGR_2008.pdf
Connor, C. B. (2003). Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrière Hills Volcano, Montserrat. Geophysical Research Letters, 30(13). https://doi.org/10.1029/2003GL017384
Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0012821X19304133?token=9B50E6970E7293FB00EDE636D74F62EB0BA45C33FA245DAD1476902AD1287E896D7A6219235DCC54A359E42D94D895D0
Convertito, V., & Zollo, A. (2011). Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology, 73(6), 767–783. https://doi.org/10.1007/s00445-011-0455-2
Cooper, C. L., Swindles, G. T., Savov, I. P., Schmidt, A., & Bacon, K. L. (2018). Evaluating the relationship between climate change and volcanism. Earth-Science Reviews, 177, 238–247. https://doi.org/10.1016/j.earscirev.2017.11.009
Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R., & Smith, V. C. (2012). Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters, 39(10), n/a-n/a. https://doi.org/10.1029/2012GL051605
Countries | UNITAR. (n.d.). https://unitar.org/maps/countries
Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P., & Besse, J. (1999). On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3–4), 177–195. https://doi.org/10.1016/S0012-821X(98)00282-9
Cousins, C. R., & Crawford, I. A. (2011). Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology, 11(7), 695–710. https://doi.org/10.1089/ast.2010.0550
cp-2017-147.pdf. (n.d.). https://www.clim-past-discuss.net/cp-2017-147/cp-2017-147.pdf
Cui, Y., & Kump, L. R. (2015). Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews, 149, 5–22. https://doi.org/10.1016/j.earscirev.2014.04.007
Darcy E. Ogden and Norman H. Sleep. (2012a). Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 109(1). https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
Darcy E. Ogden and Norman H. Sleep. (2012b). Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 109(1). https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
D’Arrigo, R., Seager, R., Smerdon, J. E., LeGrande, A. N., & Cook, E. R. (2011). The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophysical Research Letters, 38(5), n/a-n/a. https://doi.org/10.1029/2011GL046696
D’Arrigo, R., Wilson, R., & Anchukaitis, K. J. (2013). Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres, 118(16), 9000–9010. https://doi.org/10.1002/jgrd.50692
De la Cruz-Reyna, S., & Tilling, R. I. (2008). Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system. Journal of Volcanology and Geothermal Research, 170(1–2), 121–134. https://doi.org/10.1016/j.jvolgeores.2007.09.002
Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China - Zhang et al., accepted.pdf. (n.d.). http://eprints.whiterose.ac.uk/128432/1/Zhang%20et%20al.%2C%20accepted.pdf
Decker, R. W., & Decker, B. (1998). Volcanoes (3rd ed). W. H. Freeman.
Delos Reyes, P. J., Bornas, Ma. A. V., Dominey-Howes, D., Pidlaoan, A. C., Magill, C. R., & Solidum, Jr., R. U. (2018). A synthesis and review of historical eruptions at Taal Volcano, Southern Luzon, Philippines. Earth-Science Reviews, 177, 565–588. https://doi.org/10.1016/j.earscirev.2017.11.014
Di Vito, M. A., Talamo, P., de Vita, S., Rucco, I., Zanchetta, G., & Cesarano, M. (2019). Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quaternary International, 499, 231–244. https://doi.org/10.1016/j.quaint.2018.03.021
Dibben, C., & Chester, D. K. (1999). Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. Journal of Volcanology and Geothermal Research, 92(1–2), 133–150. https://doi.org/10.1016/S0377-0273(99)00072-4
Dogar, M. M., Stenchikov, G., Osipov, S., Wyman, B., & Zhao, M. (2017). Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. Journal of Geophysical Research: Atmospheres, 122(15), 7922–7948. https://doi.org/10.1002/2017JD026783
Driessen, J. (2019). The Santorini eruption. An archaeological investigation of its distal impacts on Minoan Crete. Quaternary International, 499, 195–204. https://doi.org/10.1016/j.quaint.2018.04.019
Dunbar, N. W., Iverson, N. A., Van Eaton, A. R., Sigl, M., Alloway, B. V., Kurbatov, A. V., Mastin, L. G., McConnell, J. R., & Wilson, C. J. N. (2017). New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11758-0
Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S003101821730069X?token=9E59368BF1A480D19C41B03216AE62CFB032CE517B33FD17B2D4C8AFC4CD0C3014B95F72AD1F4E87F5D05888E6623F45
Earth-Science Reviews. (2015). 149. https://www.sciencedirect.com/journal/earth-science-reviews/vol/149
Effects of volcanic air pollution on health. (n.d.). https://www.researchgate.net/publication/12118448_Effects_of_volcanic_air_pollution_on_health
Ernst, R. E., Buchan, K. L., & Campbell, I. H. (2005). Frontiers in large igneous province research. Lithos, 79(3–4), 271–297. https://doi.org/10.1016/j.lithos.2004.09.004
Ernst, R. E., & Youbi, N. (2017a). How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014
Ernst, R. E., & Youbi, N. (2017b). How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014
Evidence of cultural responses to the impact of the Mazama ash fall from deeply stratified archaeological sites in southern Alberta, Canada | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618214005710?token=2963043EA7F872BCF96AAEA166AE865544D5787E1296D650809F7892FA0844B6E60DA91320E7AF252ADE63CD2B04B40D
Evidence-­‐based volcanology: application to eruption crises. (n.d.). http://www.geo.mtu.edu/~raman/VTimeSer/Bayesian_files/aspinall_etal_evidence_based_volcanology_application_eruption_crisis_Galeras.pdf
Expert judgment and the Montserrat Volcano eruption. (n.d.). http://dutiosc.twi.tudelft.nl/~risk/extrafiles/EJcourse/Sheets/Aspinall%20&%20Cooke%20PSAM4%203-9.pdf
Fahrenkamp-Uppenbrink, J. (2019). Preparing for the next supereruption. Science, 363(6433), 1296.16-1298. https://doi.org/10.1126/science.363.6433.1296-p
Fantasia, A., Adatte, T., Spangenberg, J. E., & Font, E. (2016). Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 165–180. https://doi.org/10.1016/j.palaeo.2015.06.032
Fearnley, C. J., Bird, D. K., Haynes, K., McGuire, W. J., & Jolly, G. (Eds.). (2018). Observing the Volcano World: Volcano Crisis Communication (1st ed. 2018). Springer International Publishing. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3783283660002418&institutionId=2418&customerId=2415
Fearnley, C. J., McGuire, W. J., Davies, G., & Twigg, J. (2012). Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bulletin of Volcanology, 74(9), 2023–2036. https://doi.org/10.1007/s00445-012-0645-6
Fedele, F. G., Giaccio, B., & Hajdas, I. (2008). Timescales and cultural process at 40,000BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution, 55(5), 834–857. https://doi.org/10.1016/j.jhevol.2008.08.012
Fedele, F. G., Giaccio, B., Isaia, R., & Orsi, G. (2002). Ecosystem Impact of the Campanian Ignimbrite Eruption in Late Pleistocene Europe. Quaternary Research, 57(3), 420–424. https://doi.org/10.1006/qres.2002.2331
Fei, J., & Zhou, J. (2006a). The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change, 76(3–4), 443–457. https://doi.org/10.1007/s10584-005-9012-3
Fei, J., & Zhou, J. (2006b). The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change, 76(3–4), 443–457. https://doi.org/10.1007/s10584-005-9012-3
Few, R., Armijos, M. T., & Barclay, J. (2017a). Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum, 80, 72–81. https://doi.org/10.1016/j.geoforum.2017.01.006
Few, R., Armijos, M. T., & Barclay, J. (2017b). Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum, 80, 72–81. https://doi.org/10.1016/j.geoforum.2017.01.006
Firth, C. R., & McGuire, B. (1999). Volcanoes in the Quaternary: Vol. Geological Society special publication. Geological Society.
Fitzsimmons, K. E., Hambach, U., Veres, D., & Iovita, R. (2013). The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0065839
Flückiger, S., Brönnimann, S., Holzkämper, A., Fuhrer, J., Krämer, D., Pfister, C., & Rohr, C. (2017). Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios. Environmental Research Letters, 12(7). https://doi.org/10.1088/1748-9326/aa7246
Francis, P., & Oppenheimer, C. (2004). Volcanoes - 10 copies in the library (2nd ed). Oxford University Press.
Franck Lavigne, Jean-Philippe Degeai, Jean-Christophe Komorowski, Sébastien Guillet, Vincent Robert, Pierre Lahitte, Clive Oppenheimer, Markus Stoffel, Céline M. Vidal, Surono, Indyo Pratomo, Patrick Wassmer, Irka Hajdas, Danang Sri Hadmoko and Edouard de Belizal. (2013). Source of the great A.D. 1257 mystery eruption unveiled,                            Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 110(42). https://www.jstor.org/stable/23750657?seq=1#metadata_info_tab_contents
Fraser, N. C., & Sues, H.-D. (2010). The beginning of the ‘Age of Dinosaurs’: a brief overview of terrestrial biotic changes during the Triassic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101(3–4), 189–200. https://doi.org/10.1017/S1755691011020019
Gale General OneFile - Document - Air pollution ‘causes more deaths than smoking’. (n.d.). https://go.gale.com/ps/i.do?&id=GALE|A578128317&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
Gale General OneFile - Document - First eyewitness accounts of mystery volcanic eruption. (n.d.). https://go.gale.com/ps/i.do?&id=GALE|A383506238&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
Gao, C., Gao, Y., Zhang, Q., & Shi, C. (2017). Climatic aftermath of the 1815 Tambora eruption in China. Journal of Meteorological Research, 31(1), 28–38. https://doi.org/10.1007/s13351-017-6091-9
Garcia Garriga, J., Martínez Molina, K., & Baena Preysler, J. (2012). Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory, 25(2), 81–121. https://doi.org/10.1007/s10963-012-9057-y
Gertisser, R. (2012). The great 1815 eruption of Tambora and future risks from large-scale volcanism.(Report). Geology Today, 31(4). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa423720429&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo and Michael F. Sheridan. (2006). The Avellino 3780-yr-B.P. Catastrophe as a Worst-Case Scenario for a Future Eruption at Vesuvius. Proceedings of the National Academy of Sciences of the United States of America, 103(12). https://www.jstor.org/stable/30048947?seq=1#metadata_info_tab_contents
GLIKSON, A. (2005). Asteroid/comet impact clusters, flood basalts and mass extinctions: Significance of isotopic age overlaps. Earth and Planetary Science Letters, 236(3–4), 933–937. https://doi.org/10.1016/j.epsl.2005.05.007
Grasby, S. E., Sanei, H., & Beauchamp, B. (2011). Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2), 104–107. https://doi.org/10.1038/ngeo1069
Grasby, S. E., Them, T. R., Chen, Z., Yin, R., & Ardakani, O. H. (2019). Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 196. https://doi.org/10.1016/j.earscirev.2019.102880
Gräslund, BoPrice, Neil. (n.d.). Twighlight of the gods? The dust veil event of AD 536 in critical perspective. 86(2), 428–443. https://search.proquest.com/docview/1021249071/9F226CEE94194FE3PQ/1?accountid=14783
Grattan, J. (2005). Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos, 79(3–4), 343–353. https://doi.org/10.1016/j.lithos.2004.09.006
Grattan, J. (2006). Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization. Quaternary International, 151(1), 10–18. https://doi.org/10.1016/j.quaint.2006.01.019
Grattan, J. P., & Pyatt, F. B. (1994). Acid damage to vegetation following the Laki fissure eruption in 1783 — an historical review. Science of The Total Environment, 151(3), 241–247. https://doi.org/10.1016/0048-9697(94)90473-1
Grattan, J., Torrence, R., & World Archaeological Congress. (2007a). Living under the shadow: cultural impacts of volcanic eruptions (Vol. 53). Left Coast Press. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3794712070002418&institutionId=2418&customerId=2415
Grattan, J., Torrence, R., & World Archaeological Congress. (2007b). Living under the shadow: cultural impacts of volcanic eruptions (Vol. 53). Left Coast Press. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3735715500002418&institutionId=2418&customerId=2415
Gualda, G. A. R., & Sutton, S. R. (2016). The Year Leading to a Supereruption. PLOS ONE, 11(7). https://doi.org/10.1371/journal.pone.0159200
Guillet, S. (2017). Climate response to the 1257 Samalas eruption revealed 1 by proxy records. https://www.repository.cam.ac.uk/handle/1810/262757
Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Santacroce, R., Luperini, W., & Andronico, D. (2010). Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bulletin of Volcanology, 72(9), 1021–1038. https://doi.org/10.1007/s00445-010-0379-2
H. Tuffen and R. Betts. (2010). Volcanism and climate: chicken and egg (or vice versa)? Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 368(1919), 2585–2588. http://www.jstor.org/stable/25753430
Haraldur Sigurdsson, Stanford Cashdollar and Stephen R. J. Sparks. (1982). The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology, 86(1), 39–51. http://www.jstor.org/stable/504292
Harington, C. R. (1992). The Year without a summer?: world climate in 1816. Canadian Museum of Nature.
Harris, B. (2008). The potential impact of super-volcanic eruptions on the Earth’s atmosphere. Weather, 63(8), 221–225. https://doi.org/10.1002/wea.263
Hartmann, W. K., Malin, M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., & Veverka, J. (1999). Evidence for recent volcanism on Mars from crater counts. Nature, 397(6720), 586–589. https://doi.org/10.1038/17545
Haslam, M., Clarkson, C., Petraglia, M., Korisettar, R., Jones, S., Shipton, C., Ditchfield, P., & Ambrose, S. H. (2010). The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3. Journal of Archaeological Science, 37(12), 3370–3384. https://doi.org/10.1016/j.jas.2010.07.034
Haslam, M., & Petraglia, M. (2010). Comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M.A.J. Williams, S.H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P.R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1–2), 199–203. https://doi.org/10.1016/j.palaeo.2010.03.057
Haynes, K., Barclay, J., & Pidgeon, N. (2008). The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology, 70(5), 605–621. https://doi.org/10.1007/s00445-007-0156-z
Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. (n.d.). http://pubs.er.usgs.gov/publication/pp175024
Head, J. W., Crumpler, L. S., Aubele, J. C., Guest, J. E., & Saunders, R. S. (1992). Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research, 97(E8). https://doi.org/10.1029/92JE01273
Hints of a volcanically active exomoon. (2011). Space Daily. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofg597833465&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,exo%20volcanism&offset=0
Historical unrest at large calderas of the world. (n.d.). http://pubs.er.usgs.gov/publication/b1855
Hizbaron, D. R., Hadmoko, D. S., Mei, E. T. W., Murti, S. H., Laksani, M. R. T., Tiyansyah, A. F., Siswanti, E., & Tampubolon, I. E. (2018). Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Applied Geography, 97, 212–227. https://doi.org/10.1016/j.apgeog.2018.06.012
Hodel, F., Macouin, M., Trindade, R. I. F., Triantafyllou, A., Ganne, J., Chavagnac, V., Berger, J., Rospabé, M., Destrigneville, C., Carlut, J., Ennih, N., & Agrinier, P. (2018). Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03890-w
Hoffecker, J. F., Holliday, V. T., Anikovich, M. V., Sinitsyn, A. A., Popov, V. V., Lisitsyn, S. N., Levkovskaya, G. M., Pospelova, G. A., Forman, S. L., & Giaccio, B. (2008). From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution, 55(5), 858–870. https://doi.org/10.1016/j.jhevol.2008.08.018
Höskuldsson, Á., Óskarsson, N., Pedersen, R., Grönvold, K., Vogfjörð, K., & Ólafsdóttir, R. (2007). The millennium eruption of Hekla in February 2000. Bulletin of Volcanology, 70(2), 169–182. https://doi.org/10.1007/s00445-007-0128-3
Huang, Cy. (2014). Cooling of the South China Sea by the Toba eruption and correlation with other climate proxies similar to 71,000 years ago. Geophysical Research Letters, 28(20), 3915–3918. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000171588000023&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
Hubbard, Z. (2019). Paintings in the Year Without a Summer. Philologia, 11(1). https://doi.org/10.21061/ph.173
J. Lelieveld. (n.d.). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–385. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE%7CA429410745&v=2.1&it=r
J. U. L. Baldini. (2018). Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past, 14, 969–990. https://doaj.org/article/c82dab44001c4b949ee409f70f257021
Jacoby, Gc. (1999). Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews, 18(12), 1365–1371. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000083568700004&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
Joanna  Slawinska. (2018). Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. https://doi.org/JCLI-D-16-0498
João Zilhão. (2006). Neandertals and moderns mixed, and it matters. Evolutionary Anthropology: Issues, News, and Reviews, 15(5), 183–195. https://doi.org/10.1002/evan.20110
John Lowe, Nick Barton, Simon Blockley, Christopher Bronk Ramsey, Victoria L. Cullen, William Davies, Clive Gamble, Katharine Grant, Mark Hardiman, Rupert Housley, Christine S. Lane, Sharen Lee, Mark Lewis, Alison MacLeod, Martin Menzies, Wolfgang Müller, Mark Pollard, Catherine Price, Andrew P. Roberts, Eelco J. Rohling, Chris Satow, Victoria C. Smith, Chris B. Stringer, Emma L. Tomlinson, Dustin White, Paul Albert, Ilenia Arienzo, Graeme Barker, Dušan Borić, Antonio Carandente, Lucia Civetta, Catherine Ferrier, Jean-Luc Guadelli, Panagiotis Karkanas, Margarita Koumouzelis, Ulrich C. Müller, Giovanni Orsi, Jörg Pross, Mauro Rosi, Ljiljiana Shalamanov-Korobar, Nikolay Sirakov and Polychronis C. Tzedakis. (2012). Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America, 109(34). https://www.jstor.org/stable/41700966?seq=1#metadata_info_tab_contents
Jón Steingrímsson. (1998a). Fires of the earth: the Laki eruption, 1783-1784. Nordic Volcanological Institute.
Jón Steingrímsson. (1998b). Fires of the earth: the Laki eruption, 1783-1784. Nordic Volcanological Institute.
Jona Schellekens. (n.d.). Irish famines and English mortality in the eighteenth century. The Journal of Interdisciplinary History, 27(1), 29–43. https://go.gale.com/ps/i.do?&id=GALE|A18579104&v=2.1&u=uniaber&it=r&p=AONE&sw=w
Jonathan Stone. (2014). Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology, 3(1). https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-014-0011-9
Jones, S. C. (2010). Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quaternary Research, 73(2), 336–350. https://doi.org/10.1016/j.yqres.2009.11.005
Journal of Volcanology and Geothermal Research: Special issue on Sinabung and Kelud. (2019). 382. https://www.sciencedirect.com/journal/journal-of-volcanology-and-geothermal-research/vol/382/suppl/C
JUN SHEN, YONG LEI, THOMAS J. ALGEO, QINGLAI FENG, THOMAS SERVAIS, JIANXIN YU and LIAN ZHOU. (2013). VOLCANIC EFFECTS ON MICROPLANKTON DURING THE PERMIAN-TRIASSIC TRANSITION (SHANGSI AND XINMIN, SOUTH CHINA). PALAIOS, 28(7). https://www.jstor.org/stable/43683731?seq=1#metadata_info_tab_contents
Kaltenegger, L., Henning, W. G., & Sasselov, D. D. (2010). DETECTING VOLCANISM ON EXTRASOLAR PLANETS. The Astronomical Journal, 140(5), 1370–1380. https://doi.org/10.1088/0004-6256/140/5/1370
Kandlbauer, J., Hopcroft, P. O., Valdes, P. J., & Sparks, R. S. J. (2013). Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research: Atmospheres, 118(22), 12,497-12,507. https://doi.org/10.1002/2013JD019767
Kandlbauer, J., & Sparks, R. S. J. (2014). New estimates of the 1815 Tambora eruption volume. Journal of Volcanology and Geothermal Research, 286, 93–100. https://doi.org/10.1016/j.jvolgeores.2014.08.020
Kathryn E Fitzsimmons. (2013). The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE, 8(6). https://doaj.org/article/d962f3c36bb8435990b157d3376599d8
Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., & Adatte, T. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India, 78(5), 399–428. https://doi.org/10.1007/s12594-011-0107-3
Keller, G., Sahni, A., & Bajpai, S. (2009). Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences, 34(5), 709–728. https://doi.org/10.1007/s12038-009-0059-6
Kent, A. (2015). RESEARCH FOCUS: Tackling supervolcanoes: Big and fast? Geology, 43(11), 1039–1040. https://doi.org/10.1130/focus112015.1
Knappett, CarlRivers, RayEvans, Tim. (n.d.). The Theran eruption and Minoan Palatial Collapse. 85(9), 1008–1023. https://search.proquest.com/docview/896272713/fulltextPDF/3F1AFA67A52F429DPQ/1?accountid=14783
Künzler, M., Huggel, C., & Ramírez, J. M. (2012). A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards, 64(1), 767–796. https://doi.org/10.1007/s11069-012-0271-9
Lanciki, A., Cole-Dai, J., Thiemens, M. H., & Savarino, J. (2012). Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters, 39(1), n/a-n/a. https://doi.org/10.1029/2011GL050075
Lane, C. S., Chorn, B. T., & Johnson, T. C. (2013). Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences, 110(20), 8025–8029. https://doi.org/10.1073/pnas.1301474110
Lane, Christine S. (2013). Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8025–8029. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201600137554&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22supereruption%22&offset=0
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0047248498902196?token=7552FDE4AD153D8033B785131D7F8AC34E3E0ABA77DAB40EB3C9A449AD44583FDD787C3AF2592A72C48BA00A84A91473
Lawrence M. E. Percival, Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather and Jessica H. Whiteside. (2017). Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 114(30). https://www.jstor.org/stable/26486132?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9NA%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
Leonard, G. S., Johnston, D. M., Paton, D., Christianson, A., Becker, J., & Keys, H. (2008). Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 172(3–4), 199–215. https://doi.org/10.1016/j.jvolgeores.2007.12.008
Lessons from recent Icelandic eruptions. (n.d.). https://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and%20Development/r0112_highimpact.pdf
Lindström, S., Sanei, H., van de Schootbrugge, B., Pedersen, G. K., Lesher, C. E., Tegner, C., Heunisch, C., Dybkjær, K., & Outridge, P. M. (2019). Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances, 5(10). https://doi.org/10.1126/sciadv.aaw4018
London’s volcanic winter - Current Archaeology. (n.d.). https://www.archaeology.co.uk/articles/features/londons-volcanic-winter.htm
Longo, B. M., Rossignol, A., & Green, J. B. (2008). Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health, 122(8), 809–820. https://doi.org/10.1016/j.puhe.2007.09.017
Lopes, R. M. C., Mitchell, K. L., Williams, D., & Mitri, G. (n.d.). Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. In What is a volcano? Vol. Special paper (pp. 11–30). Geological Society of America. https://doi.org/10.1130/2010.2470(02)
Lorenz, S. (2012). Exploring the climate response to the Tambora in 1815 and the 1809 tropical eruption. Quaternary International, 279–280. https://doi.org/10.1016/j.quaint.2012.08.770
Louys, Julien. (2014). Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quaternary International, 258. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620234&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
M. Damaschke,R. Sulpizio,G. Zanchetta,B. Wagner,N. Nowaczyk,J. Rethemeyer. (2013). Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate of the Past, 9(1), 267–267. https://go.gale.com/ps/i.do?id=GALE%7CA481436213&v=2.1&u=uniaber&it=r&p=AONE&sw=w
Maltman, C., Walter, G., & Yurkov, V. (2016). A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLOS ONE, 11(2). https://doi.org/10.1371/journal.pone.0149812
Mannella, G., Giaccio, B., Zanchetta, G., Regattieri, E., Niespolo, E. M., Pereira, A., Renne, P. R., Nomade, S., Leicher, N., Perchiazzi, N., & Wagner, B. (2019). Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews, 210, 190–210. https://doi.org/10.1016/j.quascirev.2019.02.032
Manning, J. G., Ludlow, F., Stine, A. R., Boos, W. R., Sigl, M., & Marlon, J. R. (2017a). Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00957-y
Manning, J. G., Ludlow, F., Stine, A. R., Boos, W. R., Sigl, M., & Marlon, J. R. (2017b). Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00957-y
Marshall, Lauren. (n.d.). Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics, 18(3), 2307–2328. https://doi.org/https://doi.org/10.5194/acp-18-2307-2018
Martí, J., & Ernst, G. (2005). Volcanoes and the environment. Cambridge University Press. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780511331343
Mastin, L. G., Van Eaton, A. R., & Lowenstern, J. B. (2014). Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems, 15(8), 3459–3475. https://doi.org/10.1002/2014GC005469
Mastrolorenzo, G., Palladino, D. M., Vecchio, G., & Taddeucci, J. (2002). The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. Journal of Volcanology and Geothermal Research, 113(1–2), 19–36. https://doi.org/10.1016/S0377-0273(01)00248-7
Mastrolorenzo, G., & Pappalardo, L. (2010). Hazard assessment of explosive volcanism at Somma-Vesuvius. Journal of Geophysical Research, 115(B12). https://doi.org/10.1029/2009JB006871
Matthew Toohey. (n.d.). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data, 9(2), 809–809. https://go.gale.com/ps/i.do?&id=GALE|A513556448&v=2.1&u=uniaber&it=r&p=AONE&sw=w
McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J., Fudge, T. J., Knorr, G., Graf, H.-F., Grieman, M. M., … Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences, 114(38), 10035–10040. https://doi.org/10.1073/pnas.1705595114
McCoy, F., & Heiken, G. (2000). Volcanic hazards and disasters in human antiquity: Vol. Special paper / Geological Society of America. Geological Society of America.
McGuire, B. (2000). The archaeology of geological catastrophes: Vol. Geological Society special publication. Geological Society.
Medical papyri describe the effects of the Santorinieruption on human health, and date the eruptionto August 1603–March 1601 BC. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0306987706005573?token=DAEB1FCD9B957C164CCFDE1E2DF78C6E4CCB706CF0CA20256DFBEEA257D11E5BFABC31BF10FD91E9032E5D494AC1EE0A
Meehl, G. A., Teng, H., Maher, N., & England, M. H. (2015). Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters, 42(24), 10,840-10,846. https://doi.org/10.1002/2015GL066608
Mellars, P. (1999). The Neanderthal Problem Continued. Current Anthropology, 40(3), 341–364. https://doi.org/10.1086/200024
Mellars, P. (2004). Neanderthals and the modern human colonization of Europe. Nature, 432(7016), 461–465. https://doi.org/10.1038/nature03103
Michael Petraglia, Ravi Korisettar, Nicole Boivin, Christopher Clarkson, Peter Ditchfield, Sacha Jones, Jinu Koshy, Marta Mirazón Lahr, Clive Oppenheimer, David Pyle, Richard Roberts, Jean-Luc Schwenninger, Lee Arnold and Kevin White. (2007). Middle Paleolithic Assemblages from the Indian Subcontinent before and after the Toba Super-Eruption. Science, 317(5834). https://www.jstor.org/stable/20036656?seq=1#metadata_info_tab_contents
Michael R. Rampino and Stephen Self. (1955). Bottleneck in Human Evolution and the Toba Eruption. Science, 262(5142). https://www.jstor.org/stable/2882944?Search=yes&resultItemClick=true&searchText=no%3A5142&searchText=AND&searchText=sn%3A00368075&searchText=AND&searchText=sp%3A1955&searchText=AND&searchText=vo%3A262&searchText=AND&searchText=year%3A1993&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dno%253A5142%2BAND%2Bsn%253A00368075%2BAND%2Bsp%253A1955%2BAND%2Bvo%253A262%2BAND%2Byear%253A1993%26amp%3Bymod%3DYour%2Binbound%2Blink%2Bdid%2Bnot%2Bhave%2Ban%2Bexact%2Bmatch%2Bin%2Bour%2Bdatabase.%2BBut%2Bbased%2Bon%2Bthe%2Belements%2Bwe%2Bcould%2Bmatch%252C%2Bwe%2Bhave%2Breturned%2Bthe%2Bfollowing%2Bresults.&ab_segments=0%2Fbasic_SYC-4946%2Fcontrol&refreqid=search-gateway%3A6e4dc1201cee6c8f7dab34dd5daf89e9&seq=1#metadata_info_tab_contents
Michael Staubwasser. (2018). Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences, 115(37), 9116–9121. https://doi.org/10.1073/pnas.1808647115
Milia, A., Raspini, A., & Torrente, M. M. (2007). The dark nature of Somma-Vesuvius volcano: Evidence from the ∼3.5ka B.P. Avellino eruption. Quaternary International, 173–174, 57–66. https://doi.org/10.1016/j.quaint.2007.03.001
Miller, C. F., & Wark, D. A. (2008). SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS. Elements, 4(1), 11–15. https://doi.org/10.2113/GSELEMENTS.4.1.11
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., & Thordarson, T. (2012). Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters, 39(2), n/a-n/a. https://doi.org/10.1029/2011GL050168
Modeling cultural responses to volcanic disaster in the ancient Jama-Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618215008794?token=C280BD04B409C9B696DD4724F4EFBFC8BD31FD9BFFED653A8B81C65448BD2DD0D6031E8C65D26942772EC00E7E72596D
Monaghan, J. J., Bicknell, P. J., & Humble, R. J. (1994). Volcanoes, Tsunamis and the demise of the Minoans. Physica D: Nonlinear Phenomena, 77(1–3), 217–228. https://doi.org/10.1016/0167-2789(94)90135-X
Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0377027318301938?token=9E0D82814455B3D276499E8D54AA49CF5264293F6AD0E3761B96E54DA192B1C6C94BE8698A5DCC02708A72B314FF43DE
Muhammad Mubashar Dogar. (2020). Ocean Sensitivity to Periodic and Constant Volcanism. Scientific Reports, 10(1), 1–15. https://doaj.org/article/905bab3aa68c4f97bbd9c963984ae3f1
Multiple impacts across the Cretaceous–Tertiary boundary. (n.d.). http://geoweb.princeton.edu/research/Paleontology/Keller_et_al._ESR_03.pdf
Mystery eruption traced to dangerous Italian volcano : Research Highlights. (n.d.). https://www.nature.com/articles/d41586-019-01462-6
Negi, J. G., Agrawal, P. K., Pandey, O. P., & Singh, A. P. (1993). A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors, 76(3–4), 189–197. https://doi.org/10.1016/0031-9201(93)90011-W
Newhall, C., & Hoblitt, R. (2002). Constructing event trees for volcanic crises. Bulletin of Volcanology, 64(1), 3–20. https://doi.org/10.1007/s004450100173
Nicholas J. G. Pearce. (n.d.). Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP Youngest Toba eruption. Current Science, 889–893. https://pure.aber.ac.uk/portal/en/publications/origin-of-ash-in-the-central-indian-ocean-basin-and-its-implication-for-the-volume-estimate-of-the-74000-year-bp-youngest-toba-eruption(9a911aa8-2ae3-4edd-8c2f-bae37585268f).html
Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783. (n.d.). https://www.researchgate.net/publication/249868764_Non-climatic_factors_and_the_environmental_impact_of_volcanic_volatiles_Implications_of_the_Laki_fissure_eruption_of_AD_1783
Olsson, J., Stipp, S. L. S., Dalby, K. N., & Gislason, S. R. (2013). Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta, 123, 134–149. https://doi.org/10.1016/j.gca.2013.09.009
Oman, L., Robock, A., Stenchikov, G. L., & Thordarson, T. (2006). High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters, 33(18), n/a-n/a. https://doi.org/10.1029/2006GL027665
Oppenheimer, C. (2002). Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP? Quaternary Science Reviews, 21(14–15), 1593–1609. https://doi.org/10.1016/S0277-3791(01)00154-8
Oppenheimer, C. (2003). Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography, 27(2), 230–259. https://doi.org/10.1191/0309133303pp379ra
Oppenheimer, C. (2011). Eruptions that shook the world. Cambridge University Press. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781139111751
Oppenheimer, S. (2012). A single southern exit of modern humans from Africa: Before or after Toba? Quaternary International, 258, 88–99. https://doi.org/10.1016/j.quaint.2011.07.049
Panagiotakopulu, E., Higham, T., Sarpaki, A., Buckland, P., & Doumas, C. (2013). Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften, 100(7), 683–689. https://doi.org/10.1007/s00114-013-1068-8
Paolo Cherubini. (n.d.). The olive-branch dating of the Santorini eruption. Antiquity, 88(339), 267–274. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA363102251&docType=Report&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA363102251&searchId=R1&userGroupName=uniaber&inPS=true
Papale, P. (2018). Global time-size distribution of volcanic eruptions on Earth. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25286-y
Papale, P., & Marzocchi, W. (2019). Volcanic threats to global society. Science, 363(6433), 1275–1276.
Papale, P., & Shroder, J. F. (Eds.). (2014). Volcanic hazards, risks and disasters. Elsevier. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780123964762
Parnell, J. (2005). Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. International Journal of Astrobiology, 4(3–4), 175–186. https://doi.org/10.1017/S1473550405002715
Paul E. Olsen. (n.d.). Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science, 284(5414), 604–605. https://go.gale.com/ps/i.do?&id=GALE|A54552300&v=2.1&u=uniaber&it=r&p=AONE&sw=w
Paul Mellars. (n.d.). The earliest modern humans in Europe: the reanalysis of findings from two archaeological sites calls for a reassessment of when modern humans settled in Europe, and of Neanderthal cultural achievements. Nature, 479(7374), 483–486. https://go.gale.com/ps/i.do?&id=GALE|A274027588&v=2.1&u=uniaber&it=r&p=AONE&sw=w
Paul Mellars and Jennifer C. French. (2011). Tenfold Population Increase in Western Europe at the Neandertal—to—Modern Human Transition. Science, 333(6042). https://www.jstor.org/stable/27978352?seq=1#metadata_info_tab_contents
Paul Mellars, Kevin C. Gori, Martin Carr, Pedro A. Soares and Martin B. Richards. (2013). Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America, 110(26). https://www.jstor.org/stable/42706546?seq=1#metadata_info_tab_contents
Pearson, C. L., Brewer, P. W., Brown, D., Heaton, T. J., Hodgins, G. W. L., Jull, A. J. T., Lange, T., & Salzer, M. W. (2018). Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances, 4(8). https://doi.org/10.1126/sciadv.aar8241
Percival, L. M. E., Ruhl, M., Hesselbo, S. P., Jenkyns, H. C., Mather, T. A., & Whiteside, J. H. (2017). Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences, 114(30), 7929–7934. https://doi.org/10.1073/pnas.1705378114
Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., & Ruhl, M. (2015). Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428, 267–280. https://doi.org/10.1016/j.epsl.2015.06.064
Periáñez, R., & Abril, J. M. (2014). Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. Journal of Marine Systems, 139, 91–102. https://doi.org/10.1016/j.jmarsys.2014.05.016
Petraglia , Michael D. (2014). Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International, 258, 119–134. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201500210312&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
Petraglia, M. D., Ditchfield, P., Jones, S., Korisettar, R., & Pal, J. N. (2012). The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International, 258, 119–134. https://doi.org/10.1016/j.quaint.2011.07.042
Pfister, C., Schwarz-Zanetti, G., Wegmann, M., & Luterbacher, J. (1998). Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). The Holocene, 8(5), 535–552. https://doi.org/10.1191/095968398675289943
Pistolesi, M., Cioni, R., Rosi, M., & Aguilera, E. (2014a). Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology, 207, 51–63. https://doi.org/10.1016/j.geomorph.2013.10.026
Pistolesi, M., Cioni, R., Rosi, M., & Aguilera, E. (2014b). Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology, 207, 51–63. https://doi.org/10.1016/j.geomorph.2013.10.026
Pistolesi, M., Cioni, R., Rosi, M., Cashman, K. V., Rossotti, A., & Aguilera, E. (2013). Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology, 75(3). https://doi.org/10.1007/s00445-013-0698-1
Pollution and paradigms: lessons from Icelandic volcanism for - Pollution and paradigms1.pdf. (n.d.). http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution%20and%20paradigms1.pdf?sequence=1
Ponomarenko, A. G. (2016). Insects during the time around the Permian—Triassic crisis. Paleontological Journal, 50(2), 174–186. https://doi.org/10.1134/S0031030116020052
Prehistoric human responses to volcanic tephra fall events in the Ust-Kamchatsk region, Kamchatka Peninsula (Kamchatsky Krai, Russian Federation) during the middle to late Holocene (6000-500 cal BP) | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618215007090?token=5BC28A2B2576D0F5B208781B84A8A623845C2F735E442C62405C1B8234FC4D52B49F46FC00933D3242D0C641C1AA99E2
Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618206001455?token=51068B2B3A216D1053DAF06EDA03B11F9254BA3DB2935BA4E0499B93AA5E346C44F82B2D1D119DBDBB3155E2A46E61D1
Pyle, D. M., Ricketts, G. D., Margari, V., van Andel, T. H., Sinitsyn, A. A., Praslov, N. D., & Lisitsyn, S. (2006). Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews, 25(21–22), 2713–2728. https://doi.org/10.1016/j.quascirev.2006.06.008
Quaternary International. (2012). 258. https://www.sciencedirect.com/journal/quaternary-international/vol/258
Rampino, M. (2002). Supereruptions as a Threat to Civilizations on Earth-like Planets. Icarus, 156(2), 562–569. https://doi.org/10.1006/icar.2001.6808
Rampino, M R. (2014). Bottleneck in human evolution and the Toba eruption. Science (New York, 262(5142). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_medline8266085&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
Rampino, M. R. (2020). Relationship between impact-crater size and severity of related extinction episodes. Earth-Science Reviews, 201. https://doi.org/10.1016/j.earscirev.2019.102990
Rampino, M. R., & Ambrose, S. H. (2000). Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash. In Special Paper 345: Volcanic Hazards and Disasters in Human Antiquity (Vol. 345, pp. 71–82). Geological Society of America. https://doi.org/10.1130/0-8137-2345-0.71
Rampino, M. R., & Caldeira, K. (2018). Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. International Journal of Earth Sciences, 107(2), 601–606. https://doi.org/10.1007/s00531-017-1513-6
Rampino, M. R., Self, S., & Stothers, R. B. (1988). Volcanic Winters. Annual Review of Earth and Planetary Sciences, 16(1), 73–99. https://doi.org/10.1146/annurev.ea.16.050188.000445
Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability. (n.d.). http://www.geo.arizona.edu/~andyf/LaPalma/Rift%20Zone.pdf
Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618215013464?token=C6435D598538AB261293887A9839D0F615EA3E661366B9746077BA40CE4E82A1CAE480BA177CF0EA3DA60D027BDE68F2
Reigstad, L. J., Jorgensen, S. L., Lauritzen, S.-E., Schleper, C., & Urich, T. (2011). Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology, 11(7), 665–678. https://doi.org/10.1089/ast.2010.0551
Richard Stone. (2014). BACK FROM THE DEAD: The once-moribund idea that volcanism helped kill off the dinosaurs gains new credibility. Science, 346(6215). https://www.jstor.org/stable/24745481?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9Mw%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
Riede, F. (2014). Towards a science of past disasters. Natural Hazards, 71(1), 335–362. https://doi.org/10.1007/s11069-013-0913-6
Riede, F. (2019). Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quaternary International, 499, 266–277. https://doi.org/10.1016/j.quaint.2018.01.027
Roberts, R. G., Storey, M., & Haslam, M. (2013). Toba supereruption: Age and impact on East African ecosystems. Proceedings of the National Academy of Sciences, 110(33), E3047–E3047. https://doi.org/10.1073/pnas.1308550110
Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219. https://doi.org/10.1029/1998RG000054
Robock, A. (2004). Climatic impact of volcanic emissions. In The State of the Planet: Frontiers and Challenges in Geophysics (pp. 125–134). American Geophysical Union. https://doi.org/10.1029/150GM11
Robock, A., Ammann, C. M., Oman, L., Shindell, D., Levis, S., & Stenchikov, G. (2009). Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? Journal of Geophysical Research, 114(D10). https://doi.org/10.1029/2008JD011652
Rosi, M., & Hyams, J. (2003). Volcanoes: Vol. A Firefly guide. Firefly Books.
Rössler, O., & Brönnimann, S. (2018). The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment, 627, 1218–1227. https://doi.org/10.1016/j.scitotenv.2018.01.254
Rothery, D. A. (2010). Volcanoes, earthquakes and tsunamis ([New] ed). Teach Yourself. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781444127416
Ryan C. Bay, Nathan Bramall and P. Buford Price. (2004). Bipolar Correlation of Volcanism with Millennial Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 101(17). https://www.jstor.org/stable/3372084?seq=1#metadata_info_tab_contents
Sadler, J. P., & Grattan, J. P. (1999). Volcanoes as agents of past environmental change. Global and Planetary Change, 21(1–3), 181–196. https://doi.org/10.1016/S0921-8181(99)00014-4
Sandri, L., Thouret, J.-C., Constantinescu, R., Biass, S., & Tonini, R. (2014). Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Volcanology, 76(2). https://doi.org/10.1007/s00445-013-0771-9
Saunders, A. D. (2005). Large Igneous Provinces: Origin and Environmental Consequences. Elements, 1(5), 259–263. https://doi.org/10.2113/gselements.1.5.259
Scarth, A. (1994). Volcanoes: an introduction. U C L Press.
Scarth, A. (1999). Vulcan’s fury: man against the volcano. Yale University Press.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., … Willumsen, P. S. (2010). The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 327(5970), 1214–1218. https://doi.org/10.1126/science.1177265
Senatore, M. R., Ciarallo, A., & Stanley, J.-D. (2014). Pompeii Damaged by Volcaniclastic Debris Flows Triggered Centuries Prior to the 79 A.D. Vesuvius Eruption. Geoarchaeology, 29(1), 1–15. https://doi.org/10.1002/gea.21458
Shaw, R., Pulhin, J. M., & Pereira, J. J. (2010). Climate change adaptation and disaster risk reduction: an Asian perspective, Vol. 5: Vol. v. 5 (1st ed). Emerald Group Pub. Ltd. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=4047952180002418&institutionId=2418&customerId=2415
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., … Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523(7562), 543–549. https://doi.org/10.1038/nature14565
Sigurdsson, H. (2000). Encyclopedia of volcanoes. Academic Press.
Sinabung volcano: how culture shapes community resilience. (n.d.). https://doi.org/10.1108/DPM-05-2018-0160/full/pdf?title=sinabung-volcano-how-culture-shapes-community-resilience
Six medical papyri describe the effect of Santorini’s volcanic ash. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0306987706000491?token=13233F3D8053237EAA0B5D4307D4EF02C39F56EAC3CF666212510A196E0D3ED2628EFCCD16403A858298DDD537A22B50
Smith, E. I., Jacobs, Z., Johnsen, R., Ren, M., Fisher, E. C., Oestmo, S., Wilkins, J., Harris, J. A., Karkanas, P., Fitch, S., Ciravolo, A., Keenan, D., Cleghorn, N., Lane, C. S., Matthews, T., & Marean, C. W. (2018). Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature, 555(7697), 511–515. https://doi.org/10.1038/nature25967
Smith, Eugene I. (2018). Humans thrived in South Africa through the Toba eruption about 74,000 years ago. https://doi.org/10.17863/CAM.23506
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., & Vasiliev, Y. R. (2011a). Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477(7364), 312–316. https://doi.org/10.1038/nature10385
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., & Vasiliev, Y. R. (2011b). Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477(7364), 312–316. https://doi.org/10.1038/nature10385
Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618214002535?token=BAEB0FFE44FA5EFE4CB35DA787B0AB116092B6A013138A4AF71E913F0DDC8C2D1065BD17188411ABC2C390212810942E
Social responses to volcanic eruptions: A review of key concepts | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618217315045?token=D8AE8C3A6359753D6D0FE577386A061826A84D07B8E6C82C0D1C416542362EBE8BEDAA531DDEE60B0A707677761F2FF5
Solikhin, A., Thouret, J.-C., Liew, S. C., Gupta, A., Sayudi, D. S., Oehler, J.-F., & Kassouk, Z. (2015). High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bulletin of Volcanology, 77(3). https://doi.org/10.1007/s00445-015-0908-0
Sonnek, K. M., Mårtensson, T., Veibäck, E., Tunved, P., Grahn, H., von Schoenberg, P., Brännström, N., & Bucht, A. (2017). The impacts of a Laki-like eruption on the present Swedish society. Natural Hazards, 88(3), 1565–1590. https://doi.org/10.1007/s11069-017-2933-0
Sparks, R. S. J., & Aspinall, W. P. (2004). Volcanic activity: Frontiers and challenges in forecasting, prediction and risk assessment. In The state of the planet: frontiers and challenges in geophysics: Vol. Geophysical monograph (pp. 359–373). American Geophysical Union. https://doi.org/10.1029/150GM28
Speleothems as sensitive recorders of volcanic eruptions – the Bronze Age Minoan eruption recorded in a stalagmite from Turkey | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0012821X14000570?token=2ABFE04AD3F8AB8DC1684D2DA9B5701D6D87666872A5151EB04D3C6DD789F7DAD3721FDAED98C0B86CCC361E9E92334D
Steven M. Holland. (2016). Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 113(30). https://www.jstor.org/stable/26470935?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3Frefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
Stone, Richard. (2010). Iceland’s doomsday scenario? The more researchers learn about the unheralded Laki eruption of 1783, the more they see a need to prepare for a reprise that could include fluoride poisoning and widespread air pollution.(News Focus). Science, 306(5700). https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa126164075&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
Stothers, Richard B. (2012). The great Tambora eruption in 1815 and its aftermath. Science, 224. https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa3309276&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece) - srep12243.pdf. (n.d.). https://www.nature.com/articles/srep12243.pdf
Strom, R. G., Schaber, G. G., & Dawson, D. D. (1994). The global resurfacing of Venus. Journal of Geophysical Research, 99(E5). https://doi.org/10.1029/94JE00388
Sturt W. Manning. (n.d.). Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity, 88(342), 1164–1180. https://go.gale.com/ps/i.do?&id=GALE|A398627713&v=2.1&u=uniaber&it=r&p=AONE&sw=w
Sun, C., Plunkett, G., Liu, J., Zhao, H., Sigl, M., McConnell, J. R., Pilcher, J. R., Vinther, B., Steffensen, J. P., & Hall, V. (2014). Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption’s timing and impact. Geophysical Research Letters, 41(2), 694–701. https://doi.org/10.1002/2013GL058642
Takehiro, H. (2016). School-community collaboration in disaster education in a primary school near Merapi volcano in Java Island. AIP Conference Proceedings. https://doi.org/10.1063/1.4947418
Tandon, S. K. (2002). Records of the influence of Deccan volcanism on contemporary sedimentary environments in Central India. Sedimentary Geology, 147(1–2), 177–192. https://doi.org/10.1016/S0037-0738(01)00196-8
Tang, Q., Hess, P. G., Brown-Steiner, B., & Kinnison, D. E. (2013). Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters, 40(20), 5553–5558. https://doi.org/10.1002/2013GL056563
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. (n.d.-a). https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. (n.d.-b). https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
Terrestrial Volcanism in Space and Time - Annual Review of Earth and Planetary Sciences, 21(1):427. (n.d.). http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.21.050193.002235
The ∼73 ka Toba super-eruption and its impact: History of a debate | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S104061821100485X?token=8BF1083F8D14FAB06C16D7C57DD08CEFAA3F7D958B6428004B30024D0B707C5E11140A670864D0A693B6714D582E784E
The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S0033589411000251?token=4E4EEC6191F39F42814BC42AAD9CF316D15FA910CEF7A1DE70CB8B236CE4BA69D520AD582BFAB2D648944AE366D7D6DD
The drought and locust plague of 942-944 AD in the Yellow River Basin, China | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618214009215?token=95E82F06BE891AA37145B67D4A9B21F07267BC7E62AE025444E60286F4D9BB0BC9C7ED2CE641808B3AA00F62292967D1
The Economics of Natural Disasters - cesifo-forum-v11-y2010-i2-p014-024.pdf. (n.d.). https://www.econstor.eu/bitstream/10419/166388/1/cesifo-forum-v11-y2010-i2-p014-024.pdf
The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy) | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618218301228?token=79D7A12B29C1F81D9D3A0F58F90748B005D19DBD1698C5B59903C6A4FA58AAF79F27FA7FF61D9E3F4E5D31ACD812EFE4
The timing and spatiotemporal patterning of Neanderthal disappearance. (n.d.). Nature, 512(7514), 306–310. https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A379640969&v=2.1&it=r
Thordarson, T. (2003). Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research, 108(D1). https://doi.org/10.1029/2001JD002042
Thouret, J.-C., Lavigne, F., Kelfoun, K., & Bronto, S. (2000). Toward a revised hazard assessment at Merapi volcano, Central Java. Journal of Volcanology and Geothermal Research, 100(1–4), 479–502. https://doi.org/10.1016/S0377-0273(00)00152-9
Tilling, R. I., & Lipman, P. W. (1993). Lessons in reducing volcano risk. Nature, 364(6435), 277–280. https://doi.org/10.1038/364277a0
Tim Appenzeller. (n.d.). Eastern odyssey: humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. Nature, 484(7396), 24–27. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=2&docId=GALE%7CA289432159&docType=Article&sort=Relevance&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA289432159&searchId=R5&userGroupName=uniaber&inPS=true
Timmreck, C. (2012). Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change, 3(6), 545–564. https://doi.org/10.1002/wcc.192
Timmreck, C., Graf, H.-F., Zanchettin, D., Hagemann, S., Kleinen, T., & Krüger, K. (2012). Climate response to the Toba super-eruption: Regional changes. Quaternary International, 258, 30–44. https://doi.org/10.1016/j.quaint.2011.10.008
Tom Simkin, Lee Siebert and Russell Blong. (2001). Volcano Fatalities: Lessons from the Historical Record. Science, 291(5502). https://www.jstor.org/stable/3082329?seq=1#metadata_info_tab_contents
Toohey, M., Krüger, K., Sigl, M., Stordal, F., & Svensen, H. (2016). Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change, 136(3–4), 401–412. https://doi.org/10.1007/s10584-016-1648-7
Torrence, R. (2019). Social responses to volcanic eruptions: A review of key concepts. Quaternary International, 499, 258–265. https://doi.org/10.1016/j.quaint.2018.02.033
Torrence, R., & Grattan, J. (2002a). Natural disasters and cultural change: Vol. One world archaeology. Routledge. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037246860002418&institutionId=2418&customerId=2415
Torrence, R., & Grattan, J. (2002b). Natural disasters and cultural change: Vol. One world archaeology. Routledge. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037231330002418&institutionId=2418&customerId=2415
Trevisanato, S. I. (2006a). Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses, 66(1), 193–196. https://doi.org/10.1016/j.mehy.2005.08.052
Trevisanato, S. I. (2006b). Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses, 66(1), 193–196. https://doi.org/10.1016/j.mehy.2005.08.052
Trigo, R. M., Vaquero, J. M., & Stothers, R. B. (2010). Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change, 99(3–4), 535–546. https://doi.org/10.1007/s10584-009-9676-1
Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland) - 1-s2.0-S0012821X17302911-main.pdf. (n.d.). https://discovery.ucl.ac.uk/id/eprint/10074536/1/1-s2.0-S0012821X17302911-main.pdf
Vakulenko, N. V., & Sonechkin, D. M. (2017). Analysis of early instrumental air temperature observations before and after the Tambora volcano eruption. Russian Meteorology and Hydrology, 42(10), 677–684. https://doi.org/10.3103/S1068373917100089
VAN DE SCHOOTBRUGGE, B., & WIGNALL, P. B. (2016). A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine, 153(2), 332–354. https://doi.org/10.1017/S0016756815000643
van Summeren, J., Conrad, C. P., & Gaidos, E. (2011). MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS. The Astrophysical Journal, 736(1). https://doi.org/10.1088/2041-8205/736/1/L15
Veale, L., & Endfield, G. H. (2016). Situating 1816, the ‘year without summer’, in the UK. The Geographical Journal, 182(4), 318–330. https://doi.org/10.1111/geoj.12191
Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A., Kartadinata, N., Robert, V., & Lavigne, F. (2016). The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Scientific Reports, 6(1). https://doi.org/10.1038/srep34868
Villa, P., Pollarolo, L., Conforti, J., Marra, F., Biagioni, C., Degano, I., Lucejko, J. J., Tozzi, C., Pennacchioni, M., Zanchetta, G., Nicosia, C., Martini, M., Sibilia, E., & Panzeri, L. (2018). From Neandertals to modern humans: New data on the Uluzzian. PLOS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196786
Volcanic activity and human society | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S1040618215008782?token=4BFF11422C65A4796BA4C9B85C94A0B7DE2CE3EC2872FBD9AED51E61C6AE30A06AEF7CA8BF529763A550F5028E303F01
Volcanic disasters and agricultural intensification: A case study from the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. (n.d.). https://reader.elsevier.com/reader/sd/pii/S104061821100187X?token=957DD20CC0E7AB3C83F5CEA197075F2CFA510A05C918DD7CD29D1BC710AD7142C406CBEA0ED0B6CED53163B817079955
Volcanism and tectonics on Venus. (n.d.). http://www.es.ucsc.edu/~fnimmo/website/paper5.pdf
Wacey, D., Saunders, M., Cliff, J., Kilburn, M. R., Kong, C., Barley, M. E., & Brasier, M. D. (2014). Geochemistry and nano-structure of a putative ∼3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Research, 249, 1–12. https://doi.org/10.1016/j.precamres.2014.04.016
Wagner, B., Leng, M. J., Wilke, T., Böhm, A., Panagiotopoulos, K., Vogel, H., Lacey, J., Zanchetta, G., & Sulpizio, R. (2013a). Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions, 9(3), 3307–3319. https://doi.org/10.5194/cpd-9-3307-2013
Wagner, B., Leng, M. J., Wilke, T., Böhm, A., Panagiotopoulos, K., Vogel, H., Lacey, J., Zanchetta, G., & Sulpizio, R. (2013b). Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions, 9(3), 3307–3319. https://doi.org/10.5194/cpd-9-3307-2013
Walker, G. P. L., Self, S., & Wilson, L. (1984). Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research, 21(1–2), 61–78. https://doi.org/10.1016/0377-0273(84)90016-7
Wignall, P. (2005). The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements, 1(5), 293–297. https://doi.org/10.2113/gselements.1.5.293
Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1–2), 1–33. https://doi.org/10.1016/S0012-8252(00)00037-4
Williams, M. A. J., Ambrose, S. H., der Kaars, S. van, Ruehlemann, C., Chattopadhyaya, U., Pal, J., & Chauhan, P. R. (2010). Reply to the comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal, P. R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1–2), 204–211. https://doi.org/10.1016/j.palaeo.2010.05.043
Williams, M. A. J., Ambrose, S. H., van der Kaars, S., Ruehlemann, C., Chattopadhyaya, U., Pal, J., & Chauhan, P. R. (2009). Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 295–314. https://doi.org/10.1016/j.palaeo.2009.10.009
Wilson, R. M. (1999). Variation of surface air temperatures in relation to El Niño and cataclysmic volcanic eruptions, 1796–1882. Journal of Atmospheric and Solar-Terrestrial Physics, 61(17), 1307–1319. https://doi.org/10.1016/S1364-6826(99)00055-3
Winchester, S. (2004). Krakatoa: the day the world exploded, 27 August 1883. Penguin Books.
Witham, C. S. (2005). Volcanic disasters and incidents: A new database. Journal of Volcanology and Geothermal Research, 148(3–4), 191–233. https://doi.org/10.1016/j.jvolgeores.2005.04.017
Witham, C. S., & Oppenheimer, C. (2004). Mortality in England during the 1783?4 Laki Craters eruption. Bulletin of Volcanology, 67(1), 15–26. https://doi.org/10.1007/s00445-004-0357-7
Woo, J. Y. L., & Kilburn, C. R. J. (2010). Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. Journal of Geophysical Research, 115(B12). https://doi.org/10.1029/2009JB006913
Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang and Xulong Lai. (2012). Lethally Hot Temperatures During the Early Triassic Greenhouse. Science, 338(6105). https://www.jstor.org/stable/41704126?seq=1#metadata_info_tab_contents
Yalcin, K., Wake, C. P., Kreutz, K. J., Germani, M. S., & Whitlow, S. I. (2006). Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere. Geophysical Research Letters, 33(14). https://doi.org/10.1029/2006GL026013
YANG, Z., LONG, N., WANG, Y., ZHOU, X., LIU, Y., & SUN, L. (2017). A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science, 126(1). https://doi.org/10.1007/s12040-016-0790-y
Zambri, B., Robock, A., Mills, M. J., & Schmidt, A. (2019a). Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2018JD029553
Zambri, B., Robock, A., Mills, M. J., & Schmidt, A. (2019b). Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2018JD029554
Zanchetta, G., Bini, M., Di Vito, M. A., Sulpizio, R., & Sadori, L. (2019). Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quaternary International, 499, 186–194. https://doi.org/10.1016/j.quaint.2018.06.012