1
Papale P, Marzocchi W. Volcanic threats to global society. Science 2019;363:1275–6.
2
Francis P, Oppenheimer C. Volcanoes - 10 copies in the library. 2nd ed. Oxford: : Oxford University Press 2004.
3
Chester DK. Volcanoes and society. London: : E. Arnold 1994.
4
Papale P, Shroder JF, editors. Volcanic hazards, risks and disasters. Oxford: : Elsevier 2014. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780123964762
5
Jón Steingrímsson. Fires of the earth: the Laki eruption, 1783-1784. Reykjavík: : Nordic Volcanological Institute 1998.
6
Martí J, Ernst G. Volcanoes and the environment. Cambridge: : Cambridge University Press 2005. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780511331343
7
Oppenheimer C. Eruptions that shook the world. Cambridge: : Cambridge University Press 2011. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781139111751
8
Lessons from recent Icelandic eruptions. https://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and%20Development/r0112_highimpact.pdf
9
Fahrenkamp-Uppenbrink J. Preparing for the next supereruption. Science 2019;363:1296.16-1298. doi:10.1126/science.363.6433.1296-p
10
Decker RW, Decker B. Volcanoes. 3rd ed. New York: : W. H. Freeman 1998.
11
Firth CR, McGuire B. Volcanoes in the Quaternary. London: : Geological Society 1999.
12
McCoy F, Heiken G. Volcanic hazards and disasters in human antiquity. Boulder, Colo: : Geological Society of America 2000.
13
Rothery DA. Volcanoes, earthquakes and tsunamis. [New] ed. London: : Teach Yourself 2010. http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781444127416
14
Rosi M, Hyams J. Volcanoes. Toronto: : Firefly Books 2003.
15
Scarth A. Volcanoes: an introduction. London: : U C L Press 1994.
16
Scarth A. Vulcan’s fury: man against the volcano. New Haven: : Yale University Press 1999.
17
Sigurdsson H. Encyclopedia of volcanoes. San Diego: : Academic Press 2000.
18
Winchester S. Krakatoa: the day the world exploded, 27 August 1883. London: : Penguin Books 2004.
19
Alwyn Scarth. La catastrophe: Mount Pelée and the destruction of Saint-Pierre, Martinique - Alwyn Scarth - Google Books. http://books.google.co.uk/books/about/La_catastrophe.html?id=SxROAQAAIAAJ&redir_esc=y
20
The Economics of Natural Disasters - cesifo-forum-v11-y2010-i2-p014-024.pdf. https://www.econstor.eu/bitstream/10419/166388/1/cesifo-forum-v11-y2010-i2-p014-024.pdf
21
Sinabung volcano: how culture shapes community resilience. doi:10.1108/DPM-05-2018-0160/full/pdf?title=sinabung-volcano-how-culture-shapes-community-resilience
22
Barclay J, Few R, Armijos MT, et al. Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science 2019;7. doi:10.3389/feart.2019.00205
23
Armijos MT, Phillips J, Wilkinson E, et al. Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change 2017;45:217–26. doi:10.1016/j.gloenvcha.2017.06.002
24
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum 2017;80:72–81. doi:10.1016/j.geoforum.2017.01.006
25
Jonathan Stone. Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology 2014;3.https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-014-0011-9
26
Andreastuti S, Paripurno E, Gunawan H, et al. Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research 2019;382:298–310. doi:10.1016/j.jvolgeores.2017.01.022
27
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum 2017;80:72–81. doi:10.1016/j.geoforum.2017.01.006
28
Haynes K, Barclay J, Pidgeon N. The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology 2008;70:605–21. doi:10.1007/s00445-007-0156-z
29
Hizbaron DR, Hadmoko DS, Mei ETW, et al. Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Applied Geography 2018;97:212–27. doi:10.1016/j.apgeog.2018.06.012
30
Barclay J, Haynes K, Mitchell T, et al. Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society, London, Special Publications 2008;305:163–77. doi:10.1144/SP305.14
31
Tom Simkin, Lee Siebert and Russell Blong. Volcano Fatalities: Lessons from the Historical Record. Science 2001;291.https://www.jstor.org/stable/3082329?seq=1#metadata_info_tab_contents
32
Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0377027318301938?token=9E0D82814455B3D276499E8D54AA49CF5264293F6AD0E3761B96E54DA192B1C6C94BE8698A5DCC02708A72B314FF43DE
33
Journal of Volcanology and Geothermal Research: Special issue on Sinabung and Kelud. 2019;382.https://www.sciencedirect.com/journal/journal-of-volcanology-and-geothermal-research/vol/382/suppl/C
34
Delos Reyes PJ, Bornas MaAV, Dominey-Howes D, et al. A synthesis and review of historical eruptions at Taal Volcano, Southern Luzon, Philippines. Earth-Science Reviews 2018;177:565–88. doi:10.1016/j.earscirev.2017.11.014
35
Witham CS. Volcanic disasters and incidents: A new database. Journal of Volcanology and Geothermal Research 2005;148:191–233. doi:10.1016/j.jvolgeores.2005.04.017
36
Combining historical and 14C data to assess pyroclastic density current hazards in BaNos city near Tungurahua volcano (Ecuador) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215006527?token=4101E87BDEF7DB65923F9AA1B5FC04E275004933C8457E4B5DFF9A5C5FF6FA744CA133B014E81D6C792BA3B7CC418437
37
Pistolesi M, Cioni R, Rosi M, et al. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology 2014;207:51–63. doi:10.1016/j.geomorph.2013.10.026
38
Pistolesi M, Cioni R, Rosi M, et al. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology 2014;207:51–63. doi:10.1016/j.geomorph.2013.10.026
39
Pistolesi M, Cioni R, Rosi M, et al. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology 2013;75. doi:10.1007/s00445-013-0698-1
40
Barberi F, Martini M, Rosi M. Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. Journal of Volcanology and Geothermal Research 1990;42:1–12. doi:10.1016/0377-0273(90)90066-O
41
Künzler M, Huggel C, Ramírez JM. A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards 2012;64:767–96. doi:10.1007/s11069-012-0271-9
42
Dibben C, Chester DK. Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. Journal of Volcanology and Geothermal Research 1999;92:133–50. doi:10.1016/S0377-0273(99)00072-4
43
Fearnley CJ, Bird DK, Haynes K, et al., editors. Observing the Volcano World: Volcano Crisis Communication. 1st ed. 2018. Cham: : Springer International Publishing 2018. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3783283660002418&institutionId=2418&customerId=2415
44
Leonard GS, Johnston DM, Paton D, et al. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research 2008;172:199–215. doi:10.1016/j.jvolgeores.2007.12.008
45
De la Cruz-Reyna S, Tilling RI. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system. Journal of Volcanology and Geothermal Research 2008;170:121–34. doi:10.1016/j.jvolgeores.2007.09.002
46
Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. http://pubs.er.usgs.gov/publication/pp175024
47
Communicating eruption and hazard forecasts on Vesuvius, Southern Italy. http://www.ucl.ac.uk/volcanoscope/files/pdf%20files/Solana%20et%20al_Hazard%20Perception_Vesuvius_JVGR_2008.pdf
48
Chester DK, Duncan AM, Sangster H. Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning. Journal of Volcanology and Geothermal Research 2012;225–226:65–80. doi:10.1016/j.jvolgeores.2012.02.017
49
Allibone R, Cronin SJ, Charley DT, et al. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health 2012;34:155–70. doi:10.1007/s10653-010-9338-2
50
Connor CB. Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrière Hills Volcano, Montserrat. Geophysical Research Letters 2003;30. doi:10.1029/2003GL017384
51
Expert judgment and the Montserrat Volcano eruption. http://dutiosc.twi.tudelft.nl/~risk/extrafiles/EJcourse/Sheets/Aspinall%20&%20Cooke%20PSAM4%203-9.pdf
52
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards 2013;65:477–95. doi:10.1007/s11069-012-0378-z
53
Evidence-­‐based volcanology: application to eruption crises. http://www.geo.mtu.edu/~raman/VTimeSer/Bayesian_files/aspinall_etal_evidence_based_volcanology_application_eruption_crisis_Galeras.pdf
54
Barberi F, Carapezza ML, Valenza M, et al. The control of lava flow during the 1991–1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research 1993;56:1–34. doi:10.1016/0377-0273(93)90048-V
55
A new approach to assess long-­‐term lava flow hazard and risk using GIS and low-­‐cost remote sensing: the case of Mount Cameroon, West Africa. http://www.tandfonline.com/doi/pdf/10.1080/01431160802167873
56
Chester DK, Dibben CJL, Duncan AM. Volcanic hazard assessment in western Europe. Journal of Volcanology and Geothermal Research 2002;115:411–35. doi:10.1016/S0377-0273(02)00210-X
57
Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability. http://www.geo.arizona.edu/~andyf/LaPalma/Rift%20Zone.pdf
58
Fearnley CJ, McGuire WJ, Davies G, et al. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bulletin of Volcanology 2012;74:2023–36. doi:10.1007/s00445-012-0645-6
59
Newhall C, Hoblitt R. Constructing event trees for volcanic crises. Bulletin of Volcanology 2002;64:3–20. doi:10.1007/s004450100173
60
Tilling RI, Lipman PW. Lessons in reducing volcano risk. Nature 1993;364:277–80. doi:10.1038/364277a0
61
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards 2013;65:477–95. doi:10.1007/s11069-012-0378-z
62
Countries | UNITAR. https://unitar.org/maps/countries
63
Sparks RSJ, Aspinall WP. Volcanic activity: Frontiers and challenges in forecasting, prediction and risk assessment. In: The state of the planet: frontiers and challenges in geophysics. Washington, DC: : American Geophysical Union 2004. 359–73.https://doi.org/10.1029/150GM28
64
Takehiro H. School-community collaboration in disaster education in a primary school near Merapi volcano in Java Island. In: AIP Conference Proceedings. Author(s) 2016. doi:10.1063/1.4947418
65
Sandri L, Thouret J-C, Constantinescu R, et al. Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Volcanology 2014;76. doi:10.1007/s00445-013-0771-9
66
Solikhin A, Thouret J-C, Liew SC, et al. High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bulletin of Volcanology 2015;77. doi:10.1007/s00445-015-0908-0
67
Bakkour D, Enjolras G, Thouret J-C, et al. The adaptive governance of natural disaster systems: Insights from the 2010 mount Merapi eruption in Indonesia. International Journal of Disaster Risk Reduction 2015;13:167–88. doi:10.1016/j.ijdrr.2015.05.006
68
Shaw R, Pulhin JM, Pereira JJ. Climate change adaptation and disaster risk reduction: an Asian perspective, Vol. 5. 1st ed. Bradford, U.K.: : Emerald Group Pub. Ltd 2010. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=4047952180002418&institutionId=2418&customerId=2415
69
Angela K Diefenbach. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology 2015;4.https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-015-0024-z
70
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions - Schmidt et al, 2014, JGR, Assessing_SO2_aviation_hazards.pdf. http://eprints.whiterose.ac.uk/82709/1/Schmidt%20et%20al%2C%202014%2C%20JGR%2C%20Assessing_SO2_aviation_hazards.pdf
71
Anja Schmidt, Claire S. Witham, Nicolas Theys, Nigel A. D. Richards, Thorvaldur Thordarson, Kate Szpek, Wuhu Feng, Matthew C. Hort, Alan M. Woolley, Andrew R. Jones, Alison L. Redington, Ben T. Johnson, Chris L. Hayward, Kenneth S. Carslaw. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research: Atmospheres 2014;119:14,180-14,196. doi:10.1002/2014JD022070
72
Longo BM, Rossignol A, Green JB. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health 2008;122:809–20. doi:10.1016/j.puhe.2007.09.017
73
Olsson J, Stipp SLS, Dalby KN, et al. Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta 2013;123:134–49. doi:10.1016/j.gca.2013.09.009
74
Cooper CL, Swindles GT, Savov IP, et al. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews 2018;177:238–47. doi:10.1016/j.earscirev.2017.11.009
75
Robock A. Volcanic eruptions and climate. Reviews of Geophysics 2000;38:191–219. doi:10.1029/1998RG000054
76
Robock A. Climatic impact of volcanic emissions. In: The State of the Planet: Frontiers and Challenges in Geophysics. [Place of publication not identified]: : American Geophysical Union 2004. 125–34.https://doi.org/10.1029/150GM11
77
Sigl M, Winstrup M, McConnell JR, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 2015;523:543–9. doi:10.1038/nature14565
78
McConnell JR, Burke A, Dunbar NW, et al. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences 2017;114:10035–40. doi:10.1073/pnas.1705595114
79
Miller GH, Geirsdóttir Á, Zhong Y, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters 2012;39:n/a-n/a. doi:10.1029/2011GL050168
80
Bethke I, Outten S, Otterå OH, et al. Potential volcanic impacts on future climate variability. Nature Climate Change 2017;7:799–805. doi:10.1038/nclimate3394
81
Matthew Toohey. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data;9:809–809.https://go.gale.com/ps/i.do?&id=GALE|A513556448&v=2.1&u=uniaber&it=r&p=AONE&sw=w
82
Timmreck C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change 2012;3:545–64. doi:10.1002/wcc.192
83
Sun C, Plunkett G, Liu J, et al. Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption’s timing and impact. Geophysical Research Letters 2014;41:694–701. doi:10.1002/2013GL058642
84
Wilson RM. Variation of surface air temperatures in relation to El Niño and cataclysmic volcanic eruptions, 1796–1882. Journal of Atmospheric and Solar-Terrestrial Physics 1999;61:1307–19. doi:10.1016/S1364-6826(99)00055-3
85
Oman L, Robock A, Stenchikov GL, et al. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters 2006;33:n/a-n/a. doi:10.1029/2006GL027665
86
Manning JG, Ludlow F, Stine AR, et al. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications 2017;8. doi:10.1038/s41467-017-00957-y
87
Arfeuille F, Weisenstein D, Mack H, et al. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past 2014;10:359–75. doi:10.5194/cp-10-359-2014
88
Sadler JP, Grattan JP. Volcanoes as agents of past environmental change. Global and Planetary Change 1999;21:181–96. doi:10.1016/S0921-8181(99)00014-4
89
D’Arrigo R, Wilson R, Anchukaitis KJ. Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres 2013;118:9000–10. doi:10.1002/jgrd.50692
90
H. Tuffen and R. Betts. Volcanism and climate: chicken and egg (or vice versa)? Philosophical Transactions: Mathematical, Physical and Engineering Sciences 2010;368:2585–8.http://www.jstor.org/stable/25753430
91
Abdullah, Mikrajuddin. Interpretation of Past Kingdoms Poems to Reconstruct the Physical Phenomena in the Past: Case of Great Tambora Eruption 1815. Published Online First: 2012.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_arxiv1609.09225&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
92
Torrence R, Grattan J. Natural disasters and cultural change. London: : Routledge 2002. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037246860002418&institutionId=2418&customerId=2415
93
Harington CR. The Year without a summer?: world climate in 1816. Ottawa: : Canadian Museum of Nature 1992.
94
Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography 2003;27:230–59. doi:10.1191/0309133303pp379ra
95
Behringer W, Selwyn PE. Tambora and the year without a summer: how a volcano plunged the world into crisis. Medford, MA: : Polity 2019.
96
Rössler O, Brönnimann S. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment 2018;627:1218–27. doi:10.1016/j.scitotenv.2018.01.254
97
Kandlbauer J, Sparks RSJ. New estimates of the 1815 Tambora eruption volume. Journal of Volcanology and Geothermal Research 2014;286:93–100. doi:10.1016/j.jvolgeores.2014.08.020
98
Stothers, Richard B. The great Tambora eruption in 1815 and its aftermath. Science 2012;224.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa3309276&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
99
Gao C, Gao Y, Zhang Q, et al. Climatic aftermath of the 1815 Tambora eruption in China. Journal of Meteorological Research 2017;31:28–38. doi:10.1007/s13351-017-6091-9
100
Cao, Shuji. Mt. Tambora, Climatic Changes, and China’s Decline in the Nineteenth Century. Journal of World History 2012;23:587–607.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_museS1527805012300043&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
101
Kandlbauer J, Hopcroft PO, Valdes PJ, et al. Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research: Atmospheres 2013;118:12,497-12,507. doi:10.1002/2013JD019767
102
Marshall, Lauren. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics;18:2307–28. doi:https://doi.org/10.5194/acp-18-2307-2018
103
After Tambora. The Economist Published Online First: 20150411.https://www.economist.com/news/briefing/21647958-two-hundred-years-ago-most-powerful-eruption-modern-history-made-itself-felt-around
104
Vakulenko NV, Sonechkin DM. Analysis of early instrumental air temperature observations before and after the Tambora volcano eruption. Russian Meteorology and Hydrology 2017;42:677–84. doi:10.3103/S1068373917100089
105
Alexander KE, Leavenworth WB, Willis TV, et al. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event. Science Advances 2017;3. doi:10.1126/sciadv.1601635
106
Lorenz S. Exploring the climate response to the Tambora in 1815 and the 1809 tropical eruption. Quaternary International 2012;279–280. doi:10.1016/j.quaint.2012.08.770
107
Flückiger S, Brönnimann S, Holzkämper A, et al. Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios. Environmental Research Letters 2017;12. doi:10.1088/1748-9326/aa7246
108
Cole-Dai J, Ferris D, Lanciki A, et al. Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters 2009;36. doi:10.1029/2009GL040882
109
Yalcin K, Wake CP, Kreutz KJ, et al. Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere. Geophysical Research Letters 2006;33. doi:10.1029/2006GL026013
110
A. Guevara-Murua. Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past;10:1707–1707.https://go.gale.com/ps/i.do?&id=GALE|A481428553&v=2.1&u=uniaber&it=r&p=AONE&sw=w
111
Gale General OneFile - Document - First eyewitness accounts of mystery volcanic eruption. https://go.gale.com/ps/i.do?&id=GALE|A383506238&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
112
Brá. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Climate of the Past 2012;12.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa503206931&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
113
Veale L, Endfield GH. Situating 1816, the ‘year without summer’, in the UK. The Geographical Journal 2016;182:318–30. doi:10.1111/geoj.12191
114
Gertisser, R. The great 1815 eruption of Tambora and future risks from large-scale volcanism.(Report). Geology Today 2012;31.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa423720429&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
115
Hubbard Z. Paintings in the Year Without a Summer. Philologia 2019;11. doi:10.21061/ph.173
116
Alan Robock. The Climatic Aftermath. Science 2002;295.https://www.jstor.org/stable/3075904?seq=1#metadata_info_tab_contents
117
Aquila V, Oman LD, Stolarski RS, et al. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. Journal of Geophysical Research: Atmospheres 2012;117:n/a-n/a. doi:10.1029/2011JD016968
118
Brian J. Soden. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. (Reports). Science;296:727–31.https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A86062245&v=2.1&it=r
119
Tang Q, Hess PG, Brown-Steiner B, et al. Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters 2013;40:5553–8. doi:10.1002/2013GL056563
120
Meehl GA, Teng H, Maher N, et al. Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters 2015;42:10,840-10,846. doi:10.1002/2015GL066608
121
Grattan J, Torrence R, World Archaeological Congress. Living under the shadow: cultural impacts of volcanic eruptions. Walnut Creek, Calif: : Left Coast Press 2007. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3794712070002418&institutionId=2418&customerId=2415
122
Franck Lavigne, Jean-Philippe Degeai, Jean-Christophe Komorowski, Sébastien Guillet, Vincent Robert, Pierre Lahitte, Clive Oppenheimer, Markus Stoffel, Céline M. Vidal, Surono, Indyo Pratomo, Patrick Wassmer, Irka Hajdas, Danang Sri Hadmoko and Edouard de Belizal. Source of the great A.D. 1257 mystery eruption unveiled,                            Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences of the United States of America 2013;110.https://www.jstor.org/stable/23750657?seq=1#metadata_info_tab_contents
123
Vidal CM, Métrich N, Komorowski J-C, et al. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Scientific Reports 2016;6. doi:10.1038/srep34868
124
Campbell BMS. GLOBAL CLIMATES, THE 1257 MEGA-ERUPTION OF SAMALAS VOLCANO, INDONESIA, AND THE ENGLISH FOOD CRISIS OF 1258. Transactions of the Royal Historical Society 2017;27:87–121. doi:10.1017/S0080440117000056
125
London’s volcanic winter - Current Archaeology. https://www.archaeology.co.uk/articles/features/londons-volcanic-winter.htm
126
Guillet, S. Climate response to the 1257 Samalas eruption revealed 1 by proxy records. Published Online First: 2017.https://www.repository.cam.ac.uk/handle/1810/262757
127
YANG Z, LONG N, WANG Y, et al. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science 2017;126. doi:10.1007/s12040-016-0790-y
128
Alloway BV, Andreastuti S, Setiawan R, et al. Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago. Quaternary Science Reviews 2017;155:86–99. doi:10.1016/j.quascirev.2016.11.020
129
Toohey M, Krüger K, Sigl M, et al. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change 2016;136:401–12. doi:10.1007/s10584-016-1648-7
130
Pfister C, Schwarz-Zanetti G, Wegmann M, et al. Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). The Holocene 1998;8:535–52. doi:10.1191/095968398675289943
131
Gräslund, BoPrice, Neil. Twighlight of the gods? The dust veil event of AD 536 in critical perspective. ;86:428–43.https://search.proquest.com/docview/1021249071/9F226CEE94194FE3PQ/1?accountid=14783
132
cp-2017-147.pdf. https://www.clim-past-discuss.net/cp-2017-147/cp-2017-147.pdf
133
J. U. L. Baldini. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past 2018;14:969–90.https://doaj.org/article/c82dab44001c4b949ee409f70f257021
134
Dogar MM, Stenchikov G, Osipov S, et al. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. Journal of Geophysical Research: Atmospheres 2017;122:7922–48. doi:10.1002/2017JD026783
135
Muhammad Mubashar Dogar. Ocean Sensitivity to Periodic and Constant Volcanism. Scientific Reports 2020;10:1–15.https://doaj.org/article/905bab3aa68c4f97bbd9c963984ae3f1
136
Joanna  Slawinska. Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. Published Online First: 15 February 2018. doi:JCLI-D-16-0498
137
Brian Zambri, Allegra N. LeGrande, Alan Robock, Joanna Slawinska. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres 2017;122:7971–89. doi:10.1002/2017JD026728
138
Papale P. Global time-size distribution of volcanic eruptions on Earth. Scientific Reports 2018;8. doi:10.1038/s41598-018-25286-y
139
Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland) - 1-s2.0-S0012821X17302911-main.pdf. https://discovery.ucl.ac.uk/id/eprint/10074536/1/1-s2.0-S0012821X17302911-main.pdf
140
Zambri B, Robock A, Mills MJ, et al. Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research: Atmospheres Published Online First: 4 July 2019. doi:10.1029/2018JD029553
141
Zambri B, Robock A, Mills MJ, et al. Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres Published Online First: 4 July 2019. doi:10.1029/2018JD029554
142
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America 2011;108:15710–5.http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
143
Jón Steingrímsson. Fires of the earth: the Laki eruption, 1783-1784. Reykjavík: : Nordic Volcanological Institute 1998.
144
Grattan JP, Pyatt FB. Acid damage to vegetation following the Laki fissure eruption in 1783 — an historical review. Science of The Total Environment 1994;151:241–7. doi:10.1016/0048-9697(94)90473-1
145
Pollution and paradigms: lessons from Icelandic volcanism for - Pollution and paradigms1.pdf. http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution%20and%20paradigms1.pdf?sequence=1
146 .
Atmospheric and environmental effects of the 1783-­‐1784 Laki eruption: a review and reassessment. http://seismo.berkeley.edu/~manga/LIPS/thordarson03.pdf
147
Lanciki A, Cole-Dai J, Thiemens MH, et al. Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters 2012;39:n/a-n/a. doi:10.1029/2011GL050075
148
Effects of volcanic air pollution on health. https://www.researchgate.net/publication/12118448_Effects_of_volcanic_air_pollution_on_health
149
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America 2011;108:15710–5.http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
150
Witham CS, Oppenheimer C. Mortality in England during the 1783?4 Laki Craters eruption. Bulletin of Volcanology 2004;67:15–26. doi:10.1007/s00445-004-0357-7
151
Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783. https://www.researchgate.net/publication/249868764_Non-climatic_factors_and_the_environmental_impact_of_volcanic_volatiles_Implications_of_the_Laki_fissure_eruption_of_AD_1783
152
Stone, Richard. Iceland’s doomsday scenario? The more researchers learn about the unheralded Laki eruption of 1783, the more they see a need to prepare for a reprise that could include fluoride poisoning and widespread air pollution.(News Focus). Science 2010;306.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa126164075&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
153
Trigo RM, Vaquero JM, Stothers RB. Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change 2010;99:535–46. doi:10.1007/s10584-009-9676-1
154
D’Arrigo R, Seager R, Smerdon JE, et al. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophysical Research Letters 2011;38:n/a-n/a. doi:10.1029/2011GL046696
155
Balkanski Y, Menut L, Garnier E, et al. Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields. Scientific Reports 2018;8. doi:10.1038/s41598-018-34228-7
156
Thordarson T. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research 2003;108. doi:10.1029/2001JD002042
157
Brázdil R, Demarée GR, Deutsch M, et al. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology 2010;100:163–89. doi:10.1007/s00704-009-0170-5
158
Jacoby, Gc. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews 1999;18:1365–71.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000083568700004&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
159
Sonnek KM, Mårtensson T, Veibäck E, et al. The impacts of a Laki-like eruption on the present Swedish society. Natural Hazards 2017;88:1565–90. doi:10.1007/s11069-017-2933-0
160
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change 2006;76:443–57. doi:10.1007/s10584-005-9012-3
161
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change 2006;76:443–57. doi:10.1007/s10584-005-9012-3
162
The drought and locust plague of 942-944 AD in the Yellow River Basin, China | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214009215?token=95E82F06BE891AA37145B67D4A9B21F07267BC7E62AE025444E60286F4D9BB0BC9C7ED2CE641808B3AA00F62292967D1
163
Höskuldsson Á, Óskarsson N, Pedersen R, et al. The millennium eruption of Hekla in February 2000. Bulletin of Volcanology 2007;70:169–82. doi:10.1007/s00445-007-0128-3
164
Walker GPL, Self S, Wilson L. Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research 1984;21:61–78. doi:10.1016/0377-0273(84)90016-7
165
Jona Schellekens. Irish famines and English mortality in the eighteenth century. The Journal of Interdisciplinary History;27:29–43.https://go.gale.com/ps/i.do?&id=GALE|A18579104&v=2.1&u=uniaber&it=r&p=AONE&sw=w
166
J. Lelieveld. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature;525:367–85.https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE%7CA429410745&v=2.1&it=r
167
Gale General OneFile - Document - Air pollution ‘causes more deaths than smoking’. https://go.gale.com/ps/i.do?&id=GALE|A578128317&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
168
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres 2015;120:9739–57. doi:10.1002/2015JD023638
169
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres 2015;120:9739–57. doi:10.1002/2015JD023638
170
Rampino MR, Self S, Stothers RB. Volcanic Winters. Annual Review of Earth and Planetary Sciences 1988;16:73–99. doi:10.1146/annurev.ea.16.050188.000445
171
Harris B. The potential impact of super-volcanic eruptions on the Earth’s atmosphere. Weather 2008;63:221–5. doi:10.1002/wea.263
172
Rampino M. Supereruptions as a Threat to Civilizations on Earth-like Planets. Icarus 2002;156:562–9. doi:10.1006/icar.2001.6808
173
Miller CF, Wark DA. SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS. Elements 2008;4:11–5. doi:10.2113/GSELEMENTS.4.1.11
174
Kent A. RESEARCH FOCUS: Tackling supervolcanoes: Big and fast? Geology 2015;43:1039–40. doi:10.1130/focus112015.1
175
Gualda GAR, Sutton SR. The Year Leading to a Supereruption. PLOS ONE 2016;11. doi:10.1371/journal.pone.0159200
176
Dunbar NW, Iverson NA, Van Eaton AR, et al. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports 2017;7. doi:10.1038/s41598-017-11758-0
177
Ryan C. Bay, Nathan Bramall and P. Buford Price. Bipolar Correlation of Volcanism with Millennial Climate Change. Proceedings of the National Academy of Sciences of the United States of America 2004;101.https://www.jstor.org/stable/3372084?seq=1#metadata_info_tab_contents
178
Historical unrest at large calderas of the world. http://pubs.er.usgs.gov/publication/b1855
179
Anja Schmidt. https://www.researchgate.net/profile/Anja_Schmidt
180
Mastin LG, Van Eaton AR, Lowenstern JB. Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems 2014;15:3459–75. doi:10.1002/2014GC005469
181
Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0277379119305712?token=963CD51172E1708D01C09E5C4667F89C6CE9FD3F957B0177EC133AC6F6B960CF331F3C2E140EE61CE2D2AC8BB5E2FB1F
182
The ∼73 ka Toba super-eruption and its impact: History of a debate | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821100485X?token=8BF1083F8D14FAB06C16D7C57DD08CEFAA3F7D958B6428004B30024D0B707C5E11140A670864D0A693B6714D582E784E
183
Timmreck C, Graf H-F, Zanchettin D, et al. Climate response to the Toba super-eruption: Regional changes. Quaternary International 2012;258:30–44. doi:10.1016/j.quaint.2011.10.008
184
Oppenheimer C. Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP? Quaternary Science Reviews 2002;21:1593–609. doi:10.1016/S0277-3791(01)00154-8
185
Rampino, M R. Bottleneck in human evolution and the Toba eruption. Science (New York 2014;262.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_medline8266085&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
186
Robock A, Ammann CM, Oman L, et al. Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? Journal of Geophysical Research 2009;114. doi:10.1029/2008JD011652
187
Rampino MR, Ambrose SH. Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash. In: Special Paper 345: Volcanic Hazards and Disasters in Human Antiquity. Geological Society of America 2000. 71–82. doi:10.1130/0-8137-2345-0.71
188
Michael R. Rampino and Stephen Self. Bottleneck in Human Evolution and the Toba Eruption. Science 1955;262.https://www.jstor.org/stable/2882944?Search=yes&resultItemClick=true&searchText=no%3A5142&searchText=AND&searchText=sn%3A00368075&searchText=AND&searchText=sp%3A1955&searchText=AND&searchText=vo%3A262&searchText=AND&searchText=year%3A1993&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dno%253A5142%2BAND%2Bsn%253A00368075%2BAND%2Bsp%253A1955%2BAND%2Bvo%253A262%2BAND%2Byear%253A1993%26amp%3Bymod%3DYour%2Binbound%2Blink%2Bdid%2Bnot%2Bhave%2Ban%2Bexact%2Bmatch%2Bin%2Bour%2Bdatabase.%2BBut%2Bbased%2Bon%2Bthe%2Belements%2Bwe%2Bcould%2Bmatch%252C%2Bwe%2Bhave%2Breturned%2Bthe%2Bfollowing%2Bresults.&ab_segments=0%2Fbasic_SYC-4946%2Fcontrol&refreqid=search-gateway%3A6e4dc1201cee6c8f7dab34dd5daf89e9&seq=1#metadata_info_tab_contents
189
Wagner B, Leng MJ, Wilke T, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions 2013;9:3307–19. doi:10.5194/cpd-9-3307-2013
190
Roberts RG, Storey M, Haslam M. Toba supereruption: Age and impact on East African ecosystems. Proceedings of the National Academy of Sciences 2013;110:E3047–E3047. doi:10.1073/pnas.1308550110
191
Smith, Eugene I. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Published Online First: 2018. doi:10.17863/CAM.23506
192
Smith EI, Jacobs Z, Johnsen R, et al. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature 2018;555:511–5. doi:10.1038/nature25967
193
Oppenheimer S. A single southern exit of modern humans from Africa: Before or after Toba? Quaternary International 2012;258:88–99. doi:10.1016/j.quaint.2011.07.049
194
Lane, Christine S. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America 2013;110:8025–9.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201600137554&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22supereruption%22&offset=0
195
Petraglia MD, Ditchfield P, Jones S, et al. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International 2012;258:119–34. doi:10.1016/j.quaint.2011.07.042
196
Michael Petraglia, Ravi Korisettar, Nicole Boivin, Christopher Clarkson, Peter Ditchfield, Sacha Jones, Jinu Koshy, Marta Mirazón Lahr, Clive Oppenheimer, David Pyle, Richard Roberts, Jean-Luc Schwenninger, Lee Arnold and Kevin White. Middle Paleolithic Assemblages from the Indian Subcontinent before and after the Toba Super-Eruption. Science 2007;317.https://www.jstor.org/stable/20036656?seq=1#metadata_info_tab_contents
197
Clarkson, Chris. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption.(Report). Quaternary International 2014;258.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620226&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
198
Jones SC. Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quaternary Research 2010;73:336–50. doi:10.1016/j.yqres.2009.11.005
199
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0047248498902196?token=7552FDE4AD153D8033B785131D7F8AC34E3E0ABA77DAB40EB3C9A449AD44583FDD787C3AF2592A72C48BA00A84A91473
200
Williams MAJ, Ambrose SH, van der Kaars S, et al. Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 2009;284:295–314. doi:10.1016/j.palaeo.2009.10.009
201
Haslam M, Petraglia M. Comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M.A.J. Williams, S.H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P.R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology 2010;296:199–203. doi:10.1016/j.palaeo.2010.03.057
202
Williams MAJ, Ambrose SH, der Kaars S van, et al. Reply to the comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal, P. R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology 2010;296:204–11. doi:10.1016/j.palaeo.2010.05.043
203
Haslam M, Clarkson C, Petraglia M, et al. The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3. Journal of Archaeological Science 2010;37:3370–84. doi:10.1016/j.jas.2010.07.034
204
Petraglia , Michael D. Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary international 2014;258:119–34.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201500210312&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
205
Tim Appenzeller. Eastern odyssey: humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. Nature;484:24–7.https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=2&docId=GALE%7CA289432159&docType=Article&sort=Relevance&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA289432159&searchId=R5&userGroupName=uniaber&inPS=true
206
Louys, Julien. Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quaternary International 2014;258.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620234&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
207
Wagner B, Leng MJ, Wilke T, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions 2013;9:3307–19. doi:10.5194/cpd-9-3307-2013
208
Huang, Cy. Cooling of the South China Sea by the Toba eruption and correlation with other climate proxies similar to 71,000 years ago. Geophysical Research Letters 2014;28:3915–8.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000171588000023&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
209
Lane CS, Chorn BT, Johnson TC. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences 2013;110:8025–9. doi:10.1073/pnas.1301474110
210
Nicholas J. G. Pearce. Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP Youngest Toba eruption. Current Science;:889–93.https://pure.aber.ac.uk/portal/en/publications/origin-of-ash-in-the-central-indian-ocean-basin-and-its-implication-for-the-volume-estimate-of-the-74000-year-bp-youngest-toba-eruption(9a911aa8-2ae3-4edd-8c2f-bae37585268f).html
211
Quaternary International. 2012;258.https://www.sciencedirect.com/journal/quaternary-international/vol/258
212
Paul Mellars, Kevin C. Gori, Martin Carr, Pedro A. Soares and Martin B. Richards. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America 2013;110.https://www.jstor.org/stable/42706546?seq=1#metadata_info_tab_contents
213
Baldini JUL, Brown RJ, McElwaine JN. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Scientific Reports 2015;5. doi:10.1038/srep17442
214
Costa A, Folch A, Macedonio G, et al. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters 2012;39:n/a-n/a. doi:10.1029/2012GL051605
215
Allen JRM, Watts WA, Huntley B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International 2000;73–74:91–110. doi:10.1016/S1040-6182(00)00067-7
216
Fitzsimmons KE, Hambach U, Veres D, et al. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE 2013;8. doi:10.1371/journal.pone.0065839
217
Woo JYL, Kilburn CRJ. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. Journal of Geophysical Research 2010;115. doi:10.1029/2009JB006913
218
Fedele FG, Giaccio B, Isaia R, et al. Ecosystem Impact of the Campanian Ignimbrite Eruption in Late Pleistocene Europe. Quaternary Research 2002;57:420–4. doi:10.1006/qres.2002.2331
219
Fedele FG, Giaccio B, Hajdas I. Timescales and cultural process at 40,000BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution 2008;55:834–57. doi:10.1016/j.jhevol.2008.08.012
220
Pyle DM, Ricketts GD, Margari V, et al. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews 2006;25:2713–28. doi:10.1016/j.quascirev.2006.06.008
221
The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0033589411000251?token=4E4EEC6191F39F42814BC42AAD9CF316D15FA910CEF7A1DE70CB8B236CE4BA69D520AD582BFAB2D648944AE366D7D6DD
222
Hoffecker JF, Holliday VT, Anikovich MV, et al. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution 2008;55:858–70. doi:10.1016/j.jhevol.2008.08.018
223
Andrei A. Sinitsyn. A Palaeolithic `Pompeii’ at Kostenki, Russia. (Research). Antiquity;77:9–15.https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA100484921&docType=Article&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA100484921&searchId=R1&userGroupName=uniaber&inPS=true
224
Kathryn E Fitzsimmons. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE 2013;8.https://doaj.org/article/d962f3c36bb8435990b157d3376599d8
225
Mellars P. The Neanderthal Problem Continued. Current Anthropology 1999;40:341–64. doi:10.1086/200024
226
John Lowe, Nick Barton, Simon Blockley, Christopher Bronk Ramsey, Victoria L. Cullen, William Davies, Clive Gamble, Katharine Grant, Mark Hardiman, Rupert Housley, Christine S. Lane, Sharen Lee, Mark Lewis, Alison MacLeod, Martin Menzies, Wolfgang Müller, Mark Pollard, Catherine Price, Andrew P. Roberts, Eelco J. Rohling, Chris Satow, Victoria C. Smith, Chris B. Stringer, Emma L. Tomlinson, Dustin White, Paul Albert, Ilenia Arienzo, Graeme Barker, Dušan Borić, Antonio Carandente, Lucia Civetta, Catherine Ferrier, Jean-Luc Guadelli, Panagiotis Karkanas, Margarita Koumouzelis, Ulrich C. Müller, Giovanni Orsi, Jörg Pross, Mauro Rosi, Ljiljiana Shalamanov-Korobar, Nikolay Sirakov and Polychronis C. Tzedakis. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America 2012;109.https://www.jstor.org/stable/41700966?seq=1#metadata_info_tab_contents
227
Black BA, Neely RR, Manga M. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology 2015;43:411–4. doi:10.1130/G36514.1
228
The timing and spatiotemporal patterning of Neanderthal disappearance. Nature;512:306–10.https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A379640969&v=2.1&it=r
229
Paul Mellars. The earliest modern humans in Europe: the reanalysis of findings from two archaeological sites calls for a reassessment of when modern humans settled in Europe, and of Neanderthal cultural achievements. Nature;479:483–6.https://go.gale.com/ps/i.do?&id=GALE|A274027588&v=2.1&u=uniaber&it=r&p=AONE&sw=w
230
Mellars P. Neanderthals and the modern human colonization of Europe. Nature 2004;432:461–5. doi:10.1038/nature03103
231
Paul Mellars and Jennifer C. French. Tenfold Population Increase in Western Europe at the Neandertal—to—Modern Human Transition. Science 2011;333.https://www.jstor.org/stable/27978352?seq=1#metadata_info_tab_contents
232
Mystery eruption traced to dangerous Italian volcano : Research Highlights. https://www.nature.com/articles/d41586-019-01462-6
233
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
234
Michael Staubwasser. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences 2018;115:9116–21. doi:10.1073/pnas.1808647115
235
João Zilhão. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology: Issues, News, and Reviews 2006;15:183–95. doi:10.1002/evan.20110
236
M. Damaschke,R. Sulpizio,G. Zanchetta,B. Wagner,N. Nowaczyk,J. Rethemeyer. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate of the Past 2013;9:267–267.https://go.gale.com/ps/i.do?id=GALE%7CA481436213&v=2.1&u=uniaber&it=r&p=AONE&sw=w
237
Villa P, Pollarolo L, Conforti J, et al. From Neandertals to modern humans: New data on the Uluzzian. PLOS ONE 2018;13. doi:10.1371/journal.pone.0196786
238
Mannella G, Giaccio B, Zanchetta G, et al. Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews 2019;210:190–210. doi:10.1016/j.quascirev.2019.02.032
239
Garcia Garriga J, Martínez Molina K, Baena Preysler J. Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory 2012;25:81–121. doi:10.1007/s10963-012-9057-y
240
Bond DPG, Grasby SE. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 2017;478:3–29. doi:10.1016/j.palaeo.2016.11.005
241
Lindström S, Sanei H, van de Schootbrugge B, et al. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances 2019;5. doi:10.1126/sciadv.aaw4018
242
VAN DE SCHOOTBRUGGE B, WIGNALL PB. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine 2016;153:332–54. doi:10.1017/S0016756815000643
243
Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China - Zhang et al., accepted.pdf. http://eprints.whiterose.ac.uk/128432/1/Zhang%20et%20al.%2C%20accepted.pdf
244
Paul E. Olsen. Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science;284:604–5.https://go.gale.com/ps/i.do?&id=GALE|A54552300&v=2.1&u=uniaber&it=r&p=AONE&sw=w
245
Sobolev SV, Sobolev AV, Kuzmin DV, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 2011;477:312–6. doi:10.1038/nature10385
246
Wignall PB. Large igneous provinces and mass extinctions. Earth-Science Reviews 2001;53:1–33. doi:10.1016/S0012-8252(00)00037-4
247
Wignall P. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements 2005;1:293–7. doi:10.2113/gselements.1.5.293
248
Ernst RE, Buchan KL, Campbell IH. Frontiers in large igneous province research. Lithos 2005;79:271–97. doi:10.1016/j.lithos.2004.09.004
249
Rampino MR, Caldeira K. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. International Journal of Earth Sciences 2018;107:601–6. doi:10.1007/s00531-017-1513-6
250
Saunders AD. Large Igneous Provinces: Origin and Environmental Consequences. Elements 2005;1:259–63. doi:10.2113/gselements.1.5.259
251
Sobolev SV, Sobolev AV, Kuzmin DV, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 2011;477:312–6. doi:10.1038/nature10385
252
Grattan J. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos 2005;79:343–53. doi:10.1016/j.lithos.2004.09.006
253
Richard Stone. BACK FROM THE DEAD: The once-moribund idea that volcanism helped kill off the dinosaurs gains new credibility. Science 2014;346.https://www.jstor.org/stable/24745481?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9Mw%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
254
Steven M. Holland. Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences of the United States of America 2016;113.https://www.jstor.org/stable/26470935?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3Frefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
255
Grasby SE, Them TR, Chen Z, et al. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews 2019;196. doi:10.1016/j.earscirev.2019.102880
256
Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters 1999;166:177–95. doi:10.1016/S0012-821X(98)00282-9
257
Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. http://libra.msra.cn/Publication/5357742/age-of-the-emeishan-flood-magmatism-and-relations-to-permian-triassic-boundary-events
258
Black BA, Hauri EH, Elkins-Tanton LT, et al. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters 2014;394:58–69. doi:10.1016/j.epsl.2014.02.057
259
Black BA, Lamarque J-F, Shields CA, et al. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 2014;42:67–70. doi:10.1130/G34875.1
260
Grasby SE, Sanei H, Beauchamp B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience 2011;4:104–7. doi:10.1038/ngeo1069
261
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 2012;109.https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
262
Percival LME, Witt MLI, Mather TA, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters 2015;428:267–80. doi:10.1016/j.epsl.2015.06.064
263
Cui Y, Kump LR. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews 2015;149:5–22. doi:10.1016/j.earscirev.2014.04.007
264
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 2012;109.https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
265
Ponomarenko AG. Insects during the time around the Permian—Triassic crisis. Paleontological Journal 2016;50:174–86. doi:10.1134/S0031030116020052
266
JUN SHEN, YONG LEI, THOMAS J. ALGEO, QINGLAI FENG, THOMAS SERVAIS, JIANXIN YU and LIAN ZHOU. VOLCANIC EFFECTS ON MICROPLANKTON DURING THE PERMIAN-TRIASSIC TRANSITION (SHANGSI AND XINMIN, SOUTH CHINA). PALAIOS 2013;28.https://www.jstor.org/stable/43683731?seq=1#metadata_info_tab_contents
267
Lawrence M. E. Percival, Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather and Jessica H. Whiteside. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America 2017;114.https://www.jstor.org/stable/26486132?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9NA%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
268
Bercovici A, Cui Y, Forel M-B, et al. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences 2015;98:225–46. doi:10.1016/j.jseaes.2014.11.016
269
Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang and Xulong Lai. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science 2012;338.https://www.jstor.org/stable/41704126?seq=1#metadata_info_tab_contents
270
Keller G, Bhowmick PK, Upadhyay H, et al. Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India 2011;78:399–428. doi:10.1007/s12594-011-0107-3
271
Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S003101821730069X?token=9E59368BF1A480D19C41B03216AE62CFB032CE517B33FD17B2D4C8AFC4CD0C3014B95F72AD1F4E87F5D05888E6623F45
272
Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0012821X19304133?token=9B50E6970E7293FB00EDE636D74F62EB0BA45C33FA245DAD1476902AD1287E896D7A6219235DCC54A359E42D94D895D0
273
Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction. https://reader.elsevier.com/reader/sd/pii/S1040618206001455?token=51068B2B3A216D1053DAF06EDA03B11F9254BA3DB2935BA4E0499B93AA5E346C44F82B2D1D119DBDBB3155E2A46E61D1
274
Negi JG, Agrawal PK, Pandey OP, et al. A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors 1993;76:189–97. doi:10.1016/0031-9201(93)90011-W
275
Rampino MR. Relationship between impact-crater size and severity of related extinction episodes. Earth-Science Reviews 2020;201. doi:10.1016/j.earscirev.2019.102990
276
Multiple impacts across the Cretaceous–Tertiary boundary. http://geoweb.princeton.edu/research/Paleontology/Keller_et_al._ESR_03.pdf
277
Tandon SK. Records of the influence of Deccan volcanism on contemporary sedimentary environments in Central India. Sedimentary Geology 2002;147:177–92. doi:10.1016/S0037-0738(01)00196-8
278
Schulte P, Alegret L, Arenillas I, et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 2010;327:1214–8. doi:10.1126/science.1177265
279
Keller G, Sahni A, Bajpai S. Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences 2009;34:709–28. doi:10.1007/s12038-009-0059-6
280
Wacey D, Saunders M, Cliff J, et al. Geochemistry and nano-structure of a putative ∼3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Research 2014;249:1–12. doi:10.1016/j.precamres.2014.04.016
281
Maltman C, Walter G, Yurkov V. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLOS ONE 2016;11. doi:10.1371/journal.pone.0149812
282
Hodel F, Macouin M, Trindade RIF, et al. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications 2018;9. doi:10.1038/s41467-018-03890-w
283
Reigstad LJ, Jorgensen SL, Lauritzen S-E, et al. Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology 2011;11:665–78. doi:10.1089/ast.2010.0551
284
Earth-Science Reviews. 2015;149.https://www.sciencedirect.com/journal/earth-science-reviews/vol/149
285
GLIKSON A. Asteroid/comet impact clusters, flood basalts and mass extinctions: Significance of isotopic age overlaps. Earth and Planetary Science Letters 2005;236:933–7. doi:10.1016/j.epsl.2005.05.007
286
Fraser NC, Sues H-D. The beginning of the ‘Age of Dinosaurs’: a brief overview of terrestrial biotic changes during the Triassic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 2010;101:189–200. doi:10.1017/S1755691011020019
287
Percival LME, Ruhl M, Hesselbo SP, et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences 2017;114:7929–34. doi:10.1073/pnas.1705378114
288
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology 2017;478:30–52. doi:10.1016/j.palaeo.2017.03.014
289
Fantasia A, Adatte T, Spangenberg JE, et al. Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology 2016;441:165–80. doi:10.1016/j.palaeo.2015.06.032
290
Grattan J, Torrence R, World Archaeological Congress. Living under the shadow: cultural impacts of volcanic eruptions. Walnut Creek, Calif: : Left Coast Press 2007. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3735715500002418&institutionId=2418&customerId=2415
291
Cashman KV, Giordano G. Volcanoes and human history. Journal of Volcanology and Geothermal Research 2008;176:325–9. doi:10.1016/j.jvolgeores.2008.01.036
292
Grattan J. Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization. Quaternary International 2006;151:10–8. doi:10.1016/j.quaint.2006.01.019
293
Riede F. Towards a science of past disasters. Natural Hazards 2014;71:335–62. doi:10.1007/s11069-013-0913-6
294
Social responses to volcanic eruptions: A review of key concepts | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618217315045?token=D8AE8C3A6359753D6D0FE577386A061826A84D07B8E6C82C0D1C416542362EBE8BEDAA531DDEE60B0A707677761F2FF5
295
Volcanic activity and human society | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215008782?token=4BFF11422C65A4796BA4C9B85C94A0B7DE2CE3EC2872FBD9AED51E61C6AE30A06AEF7CA8BF529763A550F5028E303F01
296
Zanchetta G, Bini M, Di Vito MA, et al. Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quaternary International 2019;499:186–94. doi:10.1016/j.quaint.2018.06.012
297
Volcanic disasters and agricultural intensification: A case study from the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821100187X?token=957DD20CC0E7AB3C83F5CEA197075F2CFA510A05C918DD7CD29D1BC710AD7142C406CBEA0ED0B6CED53163B817079955
298
Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214002535?token=BAEB0FFE44FA5EFE4CB35DA787B0AB116092B6A013138A4AF71E913F0DDC8C2D1065BD17188411ABC2C390212810942E
299
Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214004625?token=929B4CAB03EC49E56F14B90156292EAAF6E8D54F7094F7B6CF5AE121276CECE216DD6C7A1DA67398981B648F9A2252DA
300
Evidence of cultural responses to the impact of the Mazama ash fall from deeply stratified archaeological sites in southern Alberta, Canada | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618214005710?token=2963043EA7F872BCF96AAEA166AE865544D5787E1296D650809F7892FA0844B6E60DA91320E7AF252ADE63CD2B04B40D
301
Prehistoric human responses to volcanic tephra fall events in the Ust-Kamchatsk region, Kamchatka Peninsula (Kamchatsky Krai, Russian Federation) during the middle to late Holocene (6000-500 cal BP) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215007090?token=5BC28A2B2576D0F5B208781B84A8A623845C2F735E442C62405C1B8234FC4D52B49F46FC00933D3242D0C641C1AA99E2
302
Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215013464?token=C6435D598538AB261293887A9839D0F615EA3E661366B9746077BA40CE4E82A1CAE480BA177CF0EA3DA60D027BDE68F2
303
Torrence R, Grattan J. Natural disasters and cultural change. London: : Routledge 2002. http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037231330002418&institutionId=2418&customerId=2415
304
McGuire B. The archaeology of geological catastrophes. Bath: : Geological Society 2000.
305
Manning JG, Ludlow F, Stine AR, et al. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications 2017;8. doi:10.1038/s41467-017-00957-y
306
Chester DK, Duncan AM, Dibben CJL. The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. Journal of Volcanology and Geothermal Research 2008;172:216–28. doi:10.1016/j.jvolgeores.2007.12.009
307
Torrence R. Social responses to volcanic eruptions: A review of key concepts. Quaternary International 2019;499:258–65. doi:10.1016/j.quaint.2018.02.033
308
Riede F. Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quaternary International 2019;499:266–77. doi:10.1016/j.quaint.2018.01.027
309
Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo and Michael F. Sheridan. The Avellino 3780-yr-B.P. Catastrophe as a Worst-Case Scenario for a Future Eruption at Vesuvius. Proceedings of the National Academy of Sciences of the United States of America 2006;103.https://www.jstor.org/stable/30048947?seq=1#metadata_info_tab_contents
310
Mastrolorenzo G, Pappalardo L. Hazard assessment of explosive volcanism at Somma-Vesuvius. Journal of Geophysical Research 2010;115. doi:10.1029/2009JB006871
311
Haraldur Sigurdsson, Stanford Cashdollar and Stephen R. J. Sparks. The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology 1982;86:39–51.http://www.jstor.org/stable/504292
312
Albore Livadie C, Pearce M, Delle Donne M, et al. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International 2019;499:205–20. doi:10.1016/j.quaint.2018.03.035
313
Milia A, Raspini A, Torrente MM. The dark nature of Somma-Vesuvius volcano: Evidence from the ∼3.5ka B.P. Avellino eruption. Quaternary International 2007;173–174:57–66. doi:10.1016/j.quaint.2007.03.001
314
The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy) | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618218301228?token=79D7A12B29C1F81D9D3A0F58F90748B005D19DBD1698C5B59903C6A4FA58AAF79F27FA7FF61D9E3F4E5D31ACD812EFE4
315
Di Vito MA, Talamo P, de Vita S, et al. Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quaternary International 2019;499:231–44. doi:10.1016/j.quaint.2018.03.021
316
Convertito V, Zollo A. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology 2011;73:767–83. doi:10.1007/s00445-011-0455-2
317
Gurioli L, Sulpizio R, Cioni R, et al. Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bulletin of Volcanology 2010;72:1021–38. doi:10.1007/s00445-010-0379-2
318
Senatore MR, Ciarallo A, Stanley J-D. Pompeii Damaged by Volcaniclastic Debris Flows Triggered Centuries Prior to the 79 A.D. Vesuvius Eruption. Geoarchaeology 2014;29:1–15. doi:10.1002/gea.21458
319
Mastrolorenzo G, Palladino DM, Vecchio G, et al. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. Journal of Volcanology and Geothermal Research 2002;113:19–36. doi:10.1016/S0377-0273(01)00248-7
320
Albore Livadie C, Pearce M, Delle Donne M, et al. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International 2019;499:205–20. doi:10.1016/j.quaint.2018.03.035
321
Driessen J. The Santorini eruption. An archaeological investigation of its distal impacts on Minoan Crete. Quaternary International 2019;499:195–204. doi:10.1016/j.quaint.2018.04.019
322
Monaghan JJ, Bicknell PJ, Humble RJ. Volcanoes, Tsunamis and the demise of the Minoans. Physica D: Nonlinear Phenomena 1994;77:217–28. doi:10.1016/0167-2789(94)90135-X
323
Pearson CL, Brewer PW, Brown D, et al. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 2018;4. doi:10.1126/sciadv.aar8241
324
Athanassas CD, Modis K, Alçiçek MC, et al. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology 2018;23:160–76. doi:10.1080/14614103.2017.1288885
325
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
326
Paolo Cherubini. The olive-branch dating of the Santorini eruption. Antiquity;88:267–74.https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA363102251&docType=Report&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA363102251&searchId=R1&userGroupName=uniaber&inPS=true
327
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece) - srep12243.pdf. https://www.nature.com/articles/srep12243.pdf
328
Panagiotakopulu E, Higham T, Sarpaki A, et al. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften 2013;100:683–9. doi:10.1007/s00114-013-1068-8
329
Sturt W. Manning. Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity;88:1164–80.https://go.gale.com/ps/i.do?&id=GALE|A398627713&v=2.1&u=uniaber&it=r&p=AONE&sw=w
330
Medical papyri describe the effects of the Santorinieruption on human health, and date the eruptionto August 1603–March 1601 BC. https://reader.elsevier.com/reader/sd/pii/S0306987706005573?token=DAEB1FCD9B957C164CCFDE1E2DF78C6E4CCB706CF0CA20256DFBEEA257D11E5BFABC31BF10FD91E9032E5D494AC1EE0A
331
Athanassas CD, Modis K, Alçiçek MC, et al. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology 2018;23:160–76. doi:10.1080/14614103.2017.1288885
332
Knappett, CarlRivers, RayEvans, Tim. The Theran eruption and Minoan Palatial Collapse. ;85:1008–23.https://search.proquest.com/docview/896272713/fulltextPDF/3F1AFA67A52F429DPQ/1?accountid=14783
333
Bottema S, Sarpaki A. Environmental change in Crete: a 9000-year record of Holocene vegetation                history and the effect of the Santorini eruption. The Holocene 2003;13:733–49. doi:10.1191/0959683603hl659rp
334
Speleothems as sensitive recorders of volcanic eruptions – the Bronze Age Minoan eruption recorded in a stalagmite from Turkey | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0012821X14000570?token=2ABFE04AD3F8AB8DC1684D2DA9B5701D6D87666872A5151EB04D3C6DD789F7DAD3721FDAED98C0B86CCC361E9E92334D
335
Six medical papyri describe the effect of Santorini’s volcanic ash. https://reader.elsevier.com/reader/sd/pii/S0306987706000491?token=13233F3D8053237EAA0B5D4307D4EF02C39F56EAC3CF666212510A196E0D3ED2628EFCCD16403A858298DDD537A22B50
336
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses 2006;66:193–6. doi:10.1016/j.mehy.2005.08.052
337
Periáñez R, Abril JM. Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. Journal of Marine Systems 2014;139:91–102. doi:10.1016/j.jmarsys.2014.05.016
338
Modeling cultural responses to volcanic disaster in the ancient Jama-Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1040618215008794?token=C280BD04B409C9B696DD4724F4EFBFC8BD31FD9BFFED653A8B81C65448BD2DD0D6031E8C65D26942772EC00E7E72596D
339
Abbott DA, Sheets PD, Cooper J. Surviving Sudden Environmental Change: Answers from Archaeology. 1st ed. Boulder, Colo: : University Press of Colorado 2012. https://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=5195538870002418&institutionId=2418&customerId=2415
340
Hartmann WK, Malin M, McEwen A, et al. Evidence for recent volcanism on Mars from crater counts. Nature 1999;397:586–9. doi:10.1038/17545
341
Cousins CR, Crawford IA. Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology 2011;11:695–710. doi:10.1089/ast.2010.0550
342
Head JW, Crumpler LS, Aubele JC, et al. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research 1992;97. doi:10.1029/92JE01273
343
Terrestrial Volcanism in Space and Time - Annual Review of Earth and Planetary Sciences, 21(1):427. http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.21.050193.002235
344
Lopes RMC, Mitchell KL, Williams D, et al. Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. In: What is a volcano? Boulder, Colo: : Geological Society of America 11–30. doi:10.1130/2010.2470(02)
345
Volcanism and tectonics on Venus. http://www.es.ucsc.edu/~fnimmo/website/paper5.pdf
346
Strom RG, Schaber GG, Dawson DD. The global resurfacing of Venus. Journal of Geophysical Research 1994;99. doi:10.1029/94JE00388
347
Hints of a volcanically active exomoon. Space Daily Published Online First: 2011.https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofg597833465&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,exo%20volcanism&offset=0
348
van Summeren J, Conrad CP, Gaidos E. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS. The Astrophysical Journal 2011;736. doi:10.1088/2041-8205/736/1/L15
349
Parnell J. Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. International Journal of Astrobiology 2005;4:175–86. doi:10.1017/S1473550405002715
350
Kaltenegger L, Henning WG, Sasselov DD. DETECTING VOLCANISM ON EXTRASOLAR PLANETS. The Astronomical Journal 2010;140:1370–80. doi:10.1088/0004-6256/140/5/1370
351
Buizert C, Sigl M, Severi M, et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 2018;563:681–5. doi:10.1038/s41586-018-0727-5
352
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses 2006;66:193–6. doi:10.1016/j.mehy.2005.08.052
353
Thouret J-C, Lavigne F, Kelfoun K, et al. Toward a revised hazard assessment at Merapi volcano, Central Java. Journal of Volcanology and Geothermal Research 2000;100:479–502. doi:10.1016/S0377-0273(00)00152-9
354
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology 2017;478:30–52. doi:10.1016/j.palaeo.2017.03.014