1.
Papale P, Marzocchi W. Volcanic threats to global society. Science. 2019 Mar 22;363(6433):1275–6.
2.
Francis P, Oppenheimer C. Volcanoes - 10 copies in the library. 2nd ed. Oxford: Oxford University Press; 2004.
3.
Chester DK. Volcanoes and society. London: E. Arnold; 1994.
4.
Papale P, Shroder JF, editors. Volcanic hazards, risks and disasters [Internet]. Oxford: Elsevier; 2014. Available from: http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780123964762
5.
Jón Steingrímsson. Fires of the earth: the Laki eruption, 1783-1784. Reykjavík: Nordic Volcanological Institute; 1998.
6.
Martí J, Ernst G. Volcanoes and the environment [Internet]. Cambridge: Cambridge University Press; 2005. Available from: http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9780511331343
7.
Oppenheimer C. Eruptions that shook the world [Internet]. Cambridge: Cambridge University Press; 2011. Available from: http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781139111751
8.
Lessons from recent Icelandic eruptions [Internet]. Available from: https://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and%20Development/r0112_highimpact.pdf
9.
Fahrenkamp-Uppenbrink J. Preparing for the next supereruption. Science. 2019 Mar 22;363(6433):1296.16-1298.
10.
Decker RW, Decker B. Volcanoes. 3rd ed. New York: W. H. Freeman; 1998.
11.
Firth CR, McGuire B. Volcanoes in the Quaternary. Vol. Geological Society special publication. London: Geological Society; 1999.
12.
McCoy F, Heiken G. Volcanic hazards and disasters in human antiquity. Vol. Special paper / Geological Society of America. Boulder, Colo: Geological Society of America; 2000.
13.
Rothery DA. Volcanoes, earthquakes and tsunamis [Internet]. [New] ed. London: Teach Yourself; 2010. Available from: http://www.vlebooks.com/vleweb/product/openreader?id=AberystUni&isbn=9781444127416
14.
Rosi M, Hyams J. Volcanoes. Vol. A Firefly guide. Toronto: Firefly Books; 2003.
15.
Scarth A. Volcanoes: an introduction. London: U C L Press; 1994.
16.
Scarth A. Vulcan’s fury: man against the volcano. New Haven: Yale University Press; 1999.
17.
Sigurdsson H. Encyclopedia of volcanoes. San Diego: Academic Press; 2000.
18.
Winchester S. Krakatoa: the day the world exploded, 27 August 1883. London: Penguin Books; 2004.
19.
Alwyn Scarth. La catastrophe: Mount Pelée and the destruction of Saint-Pierre, Martinique - Alwyn Scarth - Google Books [Internet]. Terra, 2002; Available from: http://books.google.co.uk/books/about/La_catastrophe.html?id=SxROAQAAIAAJ&redir_esc=y
20.
The Economics of Natural Disasters - cesifo-forum-v11-y2010-i2-p014-024.pdf [Internet]. Available from: https://www.econstor.eu/bitstream/10419/166388/1/cesifo-forum-v11-y2010-i2-p014-024.pdf
21.
Sinabung volcano: how culture shapes community resilience [Internet]. Available from: https://www.emerald.com/insight/content/doi/10.1108/DPM-05-2018-0160/full/pdf?title=sinabung-volcano-how-culture-shapes-community-resilience
22.
Barclay J, Few R, Armijos MT, Phillips JC, Pyle DM, Hicks A, et al. Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science. 2019 Aug 14;7.
23.
Armijos MT, Phillips J, Wilkinson E, Barclay J, Hicks A, Palacios P, et al. Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change. 2017 Jul;45:217–26.
24.
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 2017 Mar;80:72–81.
25.
Jonathan Stone. Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology [Internet]. 2014;3(1). Available from: https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-014-0011-9
26.
Andreastuti S, Paripurno E, Gunawan H, Budianto A, Syahbana D, Pallister J. Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research. 2019 Sep;382:298–310.
27.
Few R, Armijos MT, Barclay J. Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum. 2017 Mar;80:72–81.
28.
Haynes K, Barclay J, Pidgeon N. The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology. 2008 Mar;70(5):605–21.
29.
Hizbaron DR, Hadmoko DS, Mei ETW, Murti SH, Laksani MRT, Tiyansyah AF, et al. Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Applied Geography. 2018 Aug;97:212–27.
30.
Barclay J, Haynes K, Mitchell T, Solana C, Teeuw R, Darnell A, et al. Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society, London, Special Publications. 2008 Jan 1;305(1):163–77.
31.
Tom Simkin, Lee Siebert and Russell Blong. Volcano Fatalities: Lessons from the Historical Record. Science [Internet]. 2001;291(5502). Available from: https://www.jstor.org/stable/3082329?seq=1#metadata_info_tab_contents
32.
Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0377027318301938?token=9E0D82814455B3D276499E8D54AA49CF5264293F6AD0E3761B96E54DA192B1C6C94BE8698A5DCC02708A72B314FF43DE
33.
Journal of Volcanology and Geothermal Research: Special issue on Sinabung and Kelud. 2019;382. Available from: https://www.sciencedirect.com/journal/journal-of-volcanology-and-geothermal-research/vol/382/suppl/C
34.
Delos Reyes PJ, Bornas MaAV, Dominey-Howes D, Pidlaoan AC, Magill CR, Solidum, Jr. RU. A synthesis and review of historical eruptions at Taal Volcano, Southern Luzon, Philippines. Earth-Science Reviews. 2018 Feb;177:565–88.
35.
Witham CS. Volcanic disasters and incidents: A new database. Journal of Volcanology and Geothermal Research. 2005 Dec;148(3–4):191–233.
36.
Combining historical and 14C data to assess pyroclastic density current hazards in BaNos city near Tungurahua volcano (Ecuador) | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618215006527?token=4101E87BDEF7DB65923F9AA1B5FC04E275004933C8457E4B5DFF9A5C5FF6FA744CA133B014E81D6C792BA3B7CC418437
37.
Pistolesi M, Cioni R, Rosi M, Aguilera E. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 2014 Feb;207:51–63.
38.
Pistolesi M, Cioni R, Rosi M, Aguilera E. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 2014 Feb;207:51–63.
39.
Pistolesi M, Cioni R, Rosi M, Cashman KV, Rossotti A, Aguilera E. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology. 2013 Mar;75(3).
40.
Barberi F, Martini M, Rosi M. Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. Journal of Volcanology and Geothermal Research. 1990 Jul;42(1–2):1–12.
41.
Künzler M, Huggel C, Ramírez JM. A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards. 2012 Oct;64(1):767–96.
42.
Dibben C, Chester DK. Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. Journal of Volcanology and Geothermal Research. 1999 Sep;92(1–2):133–50.
43.
Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G, editors. Observing the Volcano World: Volcano Crisis Communication [Internet]. 1st ed. 2018. Cham: Springer International Publishing; 2018. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3783283660002418&institutionId=2418&customerId=2415
44.
Leonard GS, Johnston DM, Paton D, Christianson A, Becker J, Keys H. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research. 2008 May;172(3–4):199–215.
45.
De la Cruz-Reyna S, Tilling RI. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system. Journal of Volcanology and Geothermal Research. 2008 Feb;170(1–2):121–34.
46.
Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006 [Internet]. Available from: http://pubs.er.usgs.gov/publication/pp175024
47.
Communicating eruption and hazard forecasts on Vesuvius, Southern Italy [Internet]. Available from: http://www.ucl.ac.uk/volcanoscope/files/pdf%20files/Solana%20et%20al_Hazard%20Perception_Vesuvius_JVGR_2008.pdf
48.
Chester DK, Duncan AM, Sangster H. Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning. Journal of Volcanology and Geothermal Research. 2012 May;225–226:65–80.
49.
Allibone R, Cronin SJ, Charley DT, Neall VE, Stewart RB, Oppenheimer C. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health. 2012 Apr;34(2):155–70.
50.
Connor CB. Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrière Hills Volcano, Montserrat. Geophysical Research Letters. 2003;30(13).
51.
Expert judgment and the Montserrat Volcano eruption [Internet]. Available from: http://dutiosc.twi.tudelft.nl/~risk/extrafiles/EJcourse/Sheets/Aspinall%20&%20Cooke%20PSAM4%203-9.pdf
52.
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 2013 Jan;65(1):477–95.
53.
Evidence-­‐based volcanology: application to eruption crises [Internet]. Available from: http://www.geo.mtu.edu/~raman/VTimeSer/Bayesian_files/aspinall_etal_evidence_based_volcanology_application_eruption_crisis_Galeras.pdf
54.
Barberi F, Carapezza ML, Valenza M, Villari L. The control of lava flow during the 1991–1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research. 1993 May;56(1–2):1–34.
55.
A new approach to assess long-­‐term lava flow hazard and risk using GIS and low-­‐cost remote sensing: the case of Mount Cameroon, West Africa [Internet]. Available from: http://www.tandfonline.com/doi/pdf/10.1080/01431160802167873
56.
Chester DK, Dibben CJL, Duncan AM. Volcanic hazard assessment in western Europe. Journal of Volcanology and Geothermal Research. 2002 Jun;115(3–4):411–35.
57.
Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability [Internet]. Available from: http://www.geo.arizona.edu/~andyf/LaPalma/Rift%20Zone.pdf
58.
Fearnley CJ, McGuire WJ, Davies G, Twigg J. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bulletin of Volcanology. 2012 Nov;74(9):2023–36.
59.
Newhall C, Hoblitt R. Constructing event trees for volcanic crises. Bulletin of Volcanology. 2002 Mar;64(1):3–20.
60.
Tilling RI, Lipman PW. Lessons in reducing volcano risk. Nature. 1993 Jul 22;364(6435):277–80.
61.
Biass S, Bonadonna C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Natural Hazards. 2013 Jan;65(1):477–95.
62.
Countries | UNITAR [Internet]. Available from: https://unitar.org/maps/countries
63.
Sparks RSJ, Aspinall WP. Volcanic activity: Frontiers and challenges in forecasting, prediction and risk assessment. In: The state of the planet: frontiers and challenges in geophysics [Internet]. Washington, DC: American Geophysical Union; 2004. p. 359–73. Available from: https://doi.org/10.1029/150GM28
64.
Takehiro H. School-community collaboration in disaster education in a primary school near Merapi volcano in Java Island. In: AIP Conference Proceedings [Internet]. Author(s); 2016. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4947418
65.
Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R. Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Volcanology. 2014 Feb;76(2).
66.
Solikhin A, Thouret JC, Liew SC, Gupta A, Sayudi DS, Oehler JF, et al. High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bulletin of Volcanology. 2015 Mar;77(3).
67.
Bakkour D, Enjolras G, Thouret JC, Kast R, Mei ETW, Prihatminingtyas B. The adaptive governance of natural disaster systems: Insights from the 2010 mount Merapi eruption in Indonesia. International Journal of Disaster Risk Reduction. 2015 Sep;13:167–88.
68.
Shaw R, Pulhin JM, Pereira JJ. Climate change adaptation and disaster risk reduction: an Asian perspective, Vol. 5 [Internet]. 1st ed. Vol. v. 5. Bradford, U.K.: Emerald Group Pub. Ltd; 2010. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=4047952180002418&institutionId=2418&customerId=2415
69.
Angela K Diefenbach. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology [Internet]. 2015;4(1). Available from: https://appliedvolc.biomedcentral.com/articles/10.1186/s13617-015-0024-z
70.
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions - Schmidt et al, 2014, JGR, Assessing_SO2_aviation_hazards.pdf [Internet]. Available from: http://eprints.whiterose.ac.uk/82709/1/Schmidt%20et%20al%2C%202014%2C%20JGR%2C%20Assessing_SO2_aviation_hazards.pdf
71.
Anja Schmidt, Claire S. Witham, Nicolas Theys, Nigel A. D. Richards, Thorvaldur Thordarson, Kate Szpek, Wuhu Feng, Matthew C. Hort, Alan M. Woolley, Andrew R. Jones, Alison L. Redington, Ben T. Johnson, Chris L. Hayward, Kenneth S. Carslaw. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research: Atmospheres [Internet]. 2014;119(24):14,180-14,196. Available from: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD022070
72.
Longo BM, Rossignol A, Green JB. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health. 2008 Aug;122(8):809–20.
73.
Olsson J, Stipp SLS, Dalby KN, Gislason SR. Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta. 2013 Dec;123:134–49.
74.
Cooper CL, Swindles GT, Savov IP, Schmidt A, Bacon KL. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews. 2018 Feb;177:238–47.
75.
Robock A. Volcanic eruptions and climate. Reviews of Geophysics. 2000 May;38(2):191–219.
76.
Robock A. Climatic impact of volcanic emissions. In: The State of the Planet: Frontiers and Challenges in Geophysics [Internet]. [Place of publication not identified]: American Geophysical Union; 2004. p. 125–34. Available from: https://doi.org/10.1029/150GM11
77.
Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015 Jul;523(7562):543–9.
78.
McConnell JR, Burke A, Dunbar NW, Köhler P, Thomas JL, Arienzo MM, et al. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences. 2017 Sep 19;114(38):10035–40.
79.
Miller GH, Geirsdóttir Á, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters. 2012 Jan;39(2):n/a-n/a.
80.
Bethke I, Outten S, Otterå OH, Hawkins E, Wagner S, Sigl M, et al. Potential volcanic impacts on future climate variability. Nature Climate Change. 2017 Nov;7(11):799–805.
81.
Matthew Toohey. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data [Internet]. 9(2):809–809. Available from: https://go.gale.com/ps/i.do?&id=GALE|A513556448&v=2.1&u=uniaber&it=r&p=AONE&sw=w
82.
Timmreck C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change. 2012 Nov;3(6):545–64.
83.
Sun C, Plunkett G, Liu J, Zhao H, Sigl M, McConnell JR, et al. Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption’s timing and impact. Geophysical Research Letters. 2014 Jan 28;41(2):694–701.
84.
Wilson RM. Variation of surface air temperatures in relation to El Niño and cataclysmic volcanic eruptions, 1796–1882. Journal of Atmospheric and Solar-Terrestrial Physics. 1999 Nov;61(17):1307–19.
85.
Oman L, Robock A, Stenchikov GL, Thordarson T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters. 2006 Sep;33(18):n/a-n/a.
86.
Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 2017 Dec;8(1).
87.
Arfeuille F, Weisenstein D, Mack H, Rozanov E, Peter T, Brönnimann S. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past. 2014 Feb 20;10(1):359–75.
88.
Sadler JP, Grattan JP. Volcanoes as agents of past environmental change. Global and Planetary Change. 1999 Jul;21(1–3):181–96.
89.
D’Arrigo R, Wilson R, Anchukaitis KJ. Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres. 2013 Aug 27;118(16):9000–10.
90.
H. Tuffen and R. Betts. Volcanism and climate: chicken and egg (or vice versa)? Philosophical Transactions: Mathematical, Physical and Engineering Sciences [Internet]. 2010;368(1919):2585–8. Available from: http://www.jstor.org/stable/25753430
91.
Abdullah, Mikrajuddin. Interpretation of Past Kingdoms Poems to Reconstruct the Physical Phenomena in the Past: Case of Great Tambora Eruption 1815. 2012; Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_arxiv1609.09225&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
92.
Torrence R, Grattan J. Natural disasters and cultural change [Internet]. Vol. One world archaeology. London: Routledge; 2002. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037246860002418&institutionId=2418&customerId=2415
93.
Harington CR. The Year without a summer?: world climate in 1816. Ottawa: Canadian Museum of Nature; 1992.
94.
Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography. 2003 Jun 1;27(2):230–59.
95.
Behringer W, Selwyn PE. Tambora and the year without a summer: how a volcano plunged the world into crisis. Medford, MA: Polity; 2019.
96.
Rössler O, Brönnimann S. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment. 2018 Jun;627:1218–27.
97.
Kandlbauer J, Sparks RSJ. New estimates of the 1815 Tambora eruption volume. Journal of Volcanology and Geothermal Research. 2014 Oct;286:93–100.
98.
Stothers, Richard B. The great Tambora eruption in 1815 and its aftermath. Science [Internet]. 2012;224. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa3309276&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
99.
Gao C, Gao Y, Zhang Q, Shi C. Climatic aftermath of the 1815 Tambora eruption in China. Journal of Meteorological Research. 2017 Feb;31(1):28–38.
100.
Cao, Shuji. Mt. Tambora, Climatic Changes, and China’s Decline in the Nineteenth Century. Journal of World History [Internet]. 2012;23(3):587–607. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_museS1527805012300043&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
101.
Kandlbauer J, Hopcroft PO, Valdes PJ, Sparks RSJ. Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research: Atmospheres. 2013 Nov 27;118(22):12,497-12,507.
102.
Marshall, Lauren. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics [Internet]. 18(3):2307–28. Available from: https://www.atmos-chem-phys.net/18/2307/2018/
103.
After Tambora. The Economist [Internet]. 20150411; Available from: https://www.economist.com/news/briefing/21647958-two-hundred-years-ago-most-powerful-eruption-modern-history-made-itself-felt-around
104.
Vakulenko NV, Sonechkin DM. Analysis of early instrumental air temperature observations before and after the Tambora volcano eruption. Russian Meteorology and Hydrology. 2017 Oct;42(10):677–84.
105.
Alexander KE, Leavenworth WB, Willis TV, Hall C, Mattocks S, Bittner SM, et al. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event. Science Advances. 2017 Jan;3(1).
106.
Lorenz S. Exploring the climate response to the Tambora in 1815 and the 1809 tropical eruption. Quaternary International. 2012 Nov;279–280.
107.
Flückiger S, Brönnimann S, Holzkämper A, Fuhrer J, Krämer D, Pfister C, et al. Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios. Environmental Research Letters. 2017 Jul 1;12(7).
108.
Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH. Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters. 2009 Nov 21;36(22).
109.
Yalcin K, Wake CP, Kreutz KJ, Germani MS, Whitlow SI. Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere. Geophysical Research Letters. 2006;33(14).
110.
A. Guevara-Murua. Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past [Internet]. 10(5):1707–1707. Available from: https://go.gale.com/ps/i.do?&id=GALE|A481428553&v=2.1&u=uniaber&it=r&p=AONE&sw=w
111.
Gale General OneFile - Document - First eyewitness accounts of mystery volcanic eruption [Internet]. Available from: https://go.gale.com/ps/i.do?&id=GALE|A383506238&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
112.
Brá. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Climate of the Past [Internet]. 2012;12(6). Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa503206931&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
113.
Veale L, Endfield GH. Situating 1816, the ‘year without summer’, in the UK. The Geographical Journal. 2016 Dec;182(4):318–30.
114.
Gertisser, R. The great 1815 eruption of Tambora and future risks from large-scale volcanism.(Report). Geology Today [Internet]. 2012;31(4). Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa423720429&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,tambora&offset=0
115.
Hubbard Z. Paintings in the Year Without a Summer. Philologia. 2019 Apr 30;11(1).
116.
Alan Robock. The Climatic Aftermath. Science [Internet]. 2002;295(5558). Available from: https://www.jstor.org/stable/3075904?seq=1#metadata_info_tab_contents
117.
Aquila V, Oman LD, Stolarski RS, Colarco PR, Newman PA. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. Journal of Geophysical Research: Atmospheres. 2012 Mar 27;117(D6):n/a-n/a.
118.
Brian J. Soden. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. (Reports). Science [Internet]. 296(5568):727–31. Available from: https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A86062245&v=2.1&it=r
119.
Tang Q, Hess PG, Brown-Steiner B, Kinnison DE. Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters. 2013 Oct 28;40(20):5553–8.
120.
Meehl GA, Teng H, Maher N, England MH. Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters. 2015 Dec 28;42(24):10,840-10,846.
121.
Grattan J, Torrence R, World Archaeological Congress. Living under the shadow: cultural impacts of volcanic eruptions [Internet]. Vol. 53. Walnut Creek, Calif: Left Coast Press; 2007. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3794712070002418&institutionId=2418&customerId=2415
122.
Franck Lavigne, Jean-Philippe Degeai, Jean-Christophe Komorowski, Sébastien Guillet, Vincent Robert, Pierre Lahitte, Clive Oppenheimer, Markus Stoffel, Céline M. Vidal, Surono, Indyo Pratomo, Patrick Wassmer, Irka Hajdas, Danang Sri Hadmoko and Edouard de Belizal. Source of the great A.D. 1257 mystery eruption unveiled,                            Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2013;110(42). Available from: https://www.jstor.org/stable/23750657?seq=1#metadata_info_tab_contents
123.
Vidal CM, Métrich N, Komorowski JC, Pratomo I, Michel A, Kartadinata N, et al. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Scientific Reports. 2016 Dec;6(1).
124.
Campbell BMS. GLOBAL CLIMATES, THE 1257 MEGA-ERUPTION OF SAMALAS VOLCANO, INDONESIA, AND THE ENGLISH FOOD CRISIS OF 1258. Transactions of the Royal Historical Society. 2017 Dec;27:87–121.
125.
London’s volcanic winter - Current Archaeology [Internet]. Available from: https://www.archaeology.co.uk/articles/features/londons-volcanic-winter.htm
126.
Guillet, S. Climate response to the 1257 Samalas eruption revealed 1 by proxy records. 2017; Available from: https://www.repository.cam.ac.uk/handle/1810/262757
127.
YANG Z, LONG N, WANG Y, ZHOU X, LIU Y, SUN L. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science. 2017 Feb;126(1).
128.
Alloway BV, Andreastuti S, Setiawan R, Miksic J, Hua Q. Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago. Quaternary Science Reviews. 2017 Jan;155:86–99.
129.
Toohey M, Krüger K, Sigl M, Stordal F, Svensen H. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change. 2016 Jun;136(3–4):401–12.
130.
Pfister C, Schwarz-Zanetti G, Wegmann M, Luterbacher J. Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). The Holocene. 1998 Sep 1;8(5):535–52.
131.
Gräslund, BoPrice, Neil. Twighlight of the gods? The dust veil event of AD 536 in critical perspective. 86(2):428–43. Available from: https://search.proquest.com/docview/1021249071/9F226CEE94194FE3PQ/1?accountid=14783
132.
cp-2017-147.pdf [Internet]. Available from: https://www.clim-past-discuss.net/cp-2017-147/cp-2017-147.pdf
133.
J. U. L. Baldini. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past [Internet]. 2018;14:969–90. Available from: https://doaj.org/article/c82dab44001c4b949ee409f70f257021
134.
Dogar MM, Stenchikov G, Osipov S, Wyman B, Zhao M. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. Journal of Geophysical Research: Atmospheres. 2017 Aug 16;122(15):7922–48.
135.
Muhammad Mubashar Dogar. Ocean Sensitivity to Periodic and Constant Volcanism. Scientific Reports [Internet]. 2020;10(1):1–15. Available from: https://doaj.org/article/905bab3aa68c4f97bbd9c963984ae3f1
136.
Joanna  Slawinska. Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. 2018 Feb 15; Available from: https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0498.1
137.
Brian Zambri, Allegra N. LeGrande, Alan Robock, Joanna Slawinska. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres [Internet]. 2017;122(15):7971–89. Available from: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD026728
138.
Papale P. Global time-size distribution of volcanic eruptions on Earth. Scientific Reports. 2018 Dec;8(1).
139.
Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland) - 1-s2.0-S0012821X17302911-main.pdf [Internet]. Available from: https://discovery.ucl.ac.uk/id/eprint/10074536/1/1-s2.0-S0012821X17302911-main.pdf
140.
Zambri B, Robock A, Mills MJ, Schmidt A. Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research: Atmospheres. 2019 Jul 4;
141.
Zambri B, Robock A, Mills MJ, Schmidt A. Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres. 2019 Jul 4;
142.
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2011;108(38):15710–5. Available from: http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
143.
Jón Steingrímsson. Fires of the earth: the Laki eruption, 1783-1784. Reykjavík: Nordic Volcanological Institute; 1998.
144.
Grattan JP, Pyatt FB. Acid damage to vegetation following the Laki fissure eruption in 1783 — an historical review. Science of The Total Environment. 1994 Jul;151(3):241–7.
145.
Pollution and paradigms: lessons from Icelandic volcanism for - Pollution and paradigms1.pdf [Internet]. Available from: http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution%20and%20paradigms1.pdf?sequence=1
146. .
Atmospheric and environmental effects of the 1783-­‐1784 Laki eruption: a review and reassessment [Internet]. Available from: http://seismo.berkeley.edu/~manga/LIPS/thordarson03.pdf
147.
Lanciki A, Cole-Dai J, Thiemens MH, Savarino J. Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters. 2012 Jan;39(1):n/a-n/a.
148.
Effects of volcanic air pollution on health [Internet]. Available from: https://www.researchgate.net/publication/12118448_Effects_of_volcanic_air_pollution_on_health
149.
Anja Schmidt, Bart Ostro, Kenneth S. Carslaw, Marjorie Wilson, Thorvaldur Thordarson, Graham W. Mann and Adrian J. Simmons. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2011;108(38):15710–5. Available from: http://www.jstor.org/stable/41352334?seq=1#page_scan_tab_contents
150.
Witham CS, Oppenheimer C. Mortality in England during the 1783?4 Laki Craters eruption. Bulletin of Volcanology. 2004 Dec;67(1):15–26.
151.
Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783 [Internet]. Available from: https://www.researchgate.net/publication/249868764_Non-climatic_factors_and_the_environmental_impact_of_volcanic_volatiles_Implications_of_the_Laki_fissure_eruption_of_AD_1783
152.
Stone, Richard. Iceland’s doomsday scenario? The more researchers learn about the unheralded Laki eruption of 1783, the more they see a need to prepare for a reprise that could include fluoride poisoning and widespread air pollution.(News Focus). Science [Internet]. 2010;306(5700). Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa126164075&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
153.
Trigo RM, Vaquero JM, Stothers RB. Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change. 2010 Apr;99(3–4):535–46.
154.
D’Arrigo R, Seager R, Smerdon JE, LeGrande AN, Cook ER. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophysical Research Letters. 2011 Mar 16;38(5):n/a-n/a.
155.
Balkanski Y, Menut L, Garnier E, Wang R, Evangeliou N, Jourdain S, et al. Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields. Scientific Reports. 2018 Dec;8(1).
156.
Thordarson T. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research. 2003;108(D1).
157.
Brázdil R, Demarée GR, Deutsch M, Garnier E, Kiss A, Luterbacher J, et al. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology. 2010 Mar;100(1–2):163–89.
158.
Jacoby, Gc. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews [Internet]. 1999;18(12):1365–71. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000083568700004&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22laki%20eruption%22&offset=0
159.
Sonnek KM, Mårtensson T, Veibäck E, Tunved P, Grahn H, von Schoenberg P, et al. The impacts of a Laki-like eruption on the present Swedish society. Natural Hazards. 2017 Sep;88(3):1565–90.
160.
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 2006 Jun;76(3–4):443–57.
161.
Fei J, Zhou J. The Possible Climatic Impact in China of Iceland’s Eldgjá Eruption Inferred from Historical Sources. Climatic Change. 2006 Jun;76(3–4):443–57.
162.
The drought and locust plague of 942-944 AD in the Yellow River Basin, China | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618214009215?token=95E82F06BE891AA37145B67D4A9B21F07267BC7E62AE025444E60286F4D9BB0BC9C7ED2CE641808B3AA00F62292967D1
163.
Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörð K, Ólafsdóttir R. The millennium eruption of Hekla in February 2000. Bulletin of Volcanology. 2007 Nov 23;70(2):169–82.
164.
Walker GPL, Self S, Wilson L. Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research. 1984 Jun;21(1–2):61–78.
165.
Jona Schellekens. Irish famines and English mortality in the eighteenth century. The Journal of Interdisciplinary History [Internet]. 27(1):29–43. Available from: https://go.gale.com/ps/i.do?&id=GALE|A18579104&v=2.1&u=uniaber&it=r&p=AONE&sw=w
166.
J. Lelieveld. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature [Internet]. 525(7569):367–85. Available from: https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE%7CA429410745&v=2.1&it=r
167.
Gale General OneFile - Document - Air pollution ‘causes more deaths than smoking’ [Internet]. Available from: https://go.gale.com/ps/i.do?&id=GALE|A578128317&v=2.1&u=uniaber&it=r&p=ITOF&sw=w
168.
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres [Internet]. 2015;120(18):9739–57. Available from: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023638
169.
Anja Schmidt, Susan Leadbetter, Nicolas Theys, Elisa Carboni, Claire S. Witham, John A. Stevenson, Cathryn E. Birch, Thorvaldur Thordarson, Steven Turnock, Sara Barsotti, Lin Delaney, Wuhu Feng, Roy G. Grainger, Matthew C. Hort, Ármann Höskuldsson, Iolanda Ialongo, Evgenia Ilyinskaya, Thorsteinn Jóhannsson, Patrick Kenny, Tamsin A. Mather, Nigel A. D. Richards, Janet Shepherd. Satellite detection, long‐range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research: Atmospheres [Internet]. 2015;120(18):9739–57. Available from: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023638
170.
Rampino MR, Self S, Stothers RB. Volcanic Winters. Annual Review of Earth and Planetary Sciences. 1988 May;16(1):73–99.
171.
Harris B. The potential impact of super-volcanic eruptions on the Earth’s atmosphere. Weather. 2008 Aug;63(8):221–5.
172.
Rampino M. Supereruptions as a Threat to Civilizations on Earth-like Planets. Icarus. 2002 Apr;156(2):562–9.
173.
Miller CF, Wark DA. SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS. Elements. 2008 Feb 1;4(1):11–5.
174.
Kent A. RESEARCH FOCUS: Tackling supervolcanoes: Big and fast? Geology. 2015 Nov;43(11):1039–40.
175.
Gualda GAR, Sutton SR. The Year Leading to a Supereruption. PLOS ONE. 2016 Jul 20;11(7).
176.
Dunbar NW, Iverson NA, Van Eaton AR, Sigl M, Alloway BV, Kurbatov AV, et al. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports. 2017 Dec;7(1).
177.
Ryan C. Bay, Nathan Bramall and P. Buford Price. Bipolar Correlation of Volcanism with Millennial Climate Change. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2004;101(17). Available from: https://www.jstor.org/stable/3372084?seq=1#metadata_info_tab_contents
178.
Historical unrest at large calderas of the world [Internet]. Available from: http://pubs.er.usgs.gov/publication/b1855
179.
Anja Schmidt [Internet]. Available from: https://www.researchgate.net/profile/Anja_Schmidt
180.
Mastin LG, Van Eaton AR, Lowenstern JB. Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems. 2014 Aug;15(8):3459–75.
181.
Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0277379119305712?token=963CD51172E1708D01C09E5C4667F89C6CE9FD3F957B0177EC133AC6F6B960CF331F3C2E140EE61CE2D2AC8BB5E2FB1F
182.
The ∼73 ka Toba super-eruption and its impact: History of a debate | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S104061821100485X?token=8BF1083F8D14FAB06C16D7C57DD08CEFAA3F7D958B6428004B30024D0B707C5E11140A670864D0A693B6714D582E784E
183.
Timmreck C, Graf HF, Zanchettin D, Hagemann S, Kleinen T, Krüger K. Climate response to the Toba super-eruption: Regional changes. Quaternary International. 2012 May;258:30–44.
184.
Oppenheimer C. Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP? Quaternary Science Reviews. 2002 Aug;21(14–15):1593–609.
185.
Rampino, M R. Bottleneck in human evolution and the Toba eruption. Science (New York [Internet]. 2014;262(5142). Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_medline8266085&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
186.
Robock A, Ammann CM, Oman L, Shindell D, Levis S, Stenchikov G. Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? Journal of Geophysical Research. 2009 May 27;114(D10).
187.
Rampino MR, Ambrose SH. Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash. In: Special Paper 345: Volcanic Hazards and Disasters in Human Antiquity [Internet]. Geological Society of America; 2000. p. 71–82. Available from: http://specialpapers.gsapubs.org/cgi/doi/10.1130/0-8137-2345-0.71
188.
Michael R. Rampino and Stephen Self. Bottleneck in Human Evolution and the Toba Eruption. Science [Internet]. 1955;262(5142). Available from: https://www.jstor.org/stable/2882944?Search=yes&resultItemClick=true&searchText=no%3A5142&searchText=AND&searchText=sn%3A00368075&searchText=AND&searchText=sp%3A1955&searchText=AND&searchText=vo%3A262&searchText=AND&searchText=year%3A1993&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dno%253A5142%2BAND%2Bsn%253A00368075%2BAND%2Bsp%253A1955%2BAND%2Bvo%253A262%2BAND%2Byear%253A1993%26amp%3Bymod%3DYour%2Binbound%2Blink%2Bdid%2Bnot%2Bhave%2Ban%2Bexact%2Bmatch%2Bin%2Bour%2Bdatabase.%2BBut%2Bbased%2Bon%2Bthe%2Belements%2Bwe%2Bcould%2Bmatch%252C%2Bwe%2Bhave%2Breturned%2Bthe%2Bfollowing%2Bresults.&ab_segments=0%2Fbasic_SYC-4946%2Fcontrol&refreqid=search-gateway%3A6e4dc1201cee6c8f7dab34dd5daf89e9&seq=1#metadata_info_tab_contents
189.
Wagner B, Leng MJ, Wilke T, Böhm A, Panagiotopoulos K, Vogel H, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 2013 Jun 19;9(3):3307–19.
190.
Roberts RG, Storey M, Haslam M. Toba supereruption: Age and impact on East African ecosystems. Proceedings of the National Academy of Sciences. 2013 Aug 13;110(33):E3047–E3047.
191.
Smith, Eugene I. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. 2018; Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_datacite15104146&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
192.
Smith EI, Jacobs Z, Johnsen R, Ren M, Fisher EC, Oestmo S, et al. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature. 2018 Mar;555(7697):511–5.
193.
Oppenheimer S. A single southern exit of modern humans from Africa: Before or after Toba? Quaternary International. 2012 May;258:88–99.
194.
Lane, Christine S. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2013;110(20):8025–9. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201600137554&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22supereruption%22&offset=0
195.
Petraglia MD, Ditchfield P, Jones S, Korisettar R, Pal JN. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International. 2012 May;258:119–34.
196.
Michael Petraglia, Ravi Korisettar, Nicole Boivin, Christopher Clarkson, Peter Ditchfield, Sacha Jones, Jinu Koshy, Marta Mirazón Lahr, Clive Oppenheimer, David Pyle, Richard Roberts, Jean-Luc Schwenninger, Lee Arnold and Kevin White. Middle Paleolithic Assemblages from the Indian Subcontinent before and after the Toba Super-Eruption. Science [Internet]. 2007;317(5834). Available from: https://www.jstor.org/stable/20036656?seq=1#metadata_info_tab_contents
197.
Clarkson, Chris. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption.(Report). Quaternary International [Internet]. 2014;258. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620226&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
198.
Jones SC. Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quaternary Research. 2010 Mar;73(2):336–50.
199.
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0047248498902196?token=7552FDE4AD153D8033B785131D7F8AC34E3E0ABA77DAB40EB3C9A449AD44583FDD787C3AF2592A72C48BA00A84A91473
200.
Williams MAJ, Ambrose SH, van der Kaars S, Ruehlemann C, Chattopadhyaya U, Pal J, et al. Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009 Dec;284(3–4):295–314.
201.
Haslam M, Petraglia M. Comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M.A.J. Williams, S.H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P.R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010 Oct;296(1–2):199–203.
202.
Williams MAJ, Ambrose SH, der Kaars S van, Ruehlemann C, Chattopadhyaya U, Pal J, et al. Reply to the comment on "Environmental impact of the 73ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H. Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal, P. R. Chauhan [Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009) 295–314]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010 Oct;296(1–2):204–11.
203.
Haslam M, Clarkson C, Petraglia M, Korisettar R, Jones S, Shipton C, et al. The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3. Journal of Archaeological Science. 2010 Dec;37(12):3370–84.
204.
Petraglia , Michael D. Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary international [Internet]. 2014;258:119–34. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_faoagrisUS201500210312&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
205.
Tim Appenzeller. Eastern odyssey: humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. Nature [Internet]. 484(7396):24–7. Available from: https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=2&docId=GALE%7CA289432159&docType=Article&sort=Relevance&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA289432159&searchId=R5&userGroupName=uniaber&inPS=true
206.
Louys, Julien. Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quaternary International [Internet]. 2014;258. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofa285620234&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
207.
Wagner B, Leng MJ, Wilke T, Böhm A, Panagiotopoulos K, Vogel H, et al. Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe. Climate of the Past Discussions. 2013 Jun 19;9(3):3307–19.
208.
Huang, Cy. Cooling of the South China Sea by the Toba eruption and correlation with other climate proxies similar to 71,000 years ago. Geophysical Research Letters [Internet]. 2014;28(20):3915–8. Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_wos000171588000023&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,%22toba%20eruption%22&offset=0
209.
Lane CS, Chorn BT, Johnson TC. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences. 2013 May 14;110(20):8025–9.
210.
Nicholas J. G. Pearce. Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP Youngest Toba eruption. Current Science [Internet]. :889–93. Available from: https://pure.aber.ac.uk/portal/en/publications/origin-of-ash-in-the-central-indian-ocean-basin-and-its-implication-for-the-volume-estimate-of-the-74000-year-bp-youngest-toba-eruption(9a911aa8-2ae3-4edd-8c2f-bae37585268f).html
211.
Quaternary International. 2012;258. Available from: https://www.sciencedirect.com/journal/quaternary-international/vol/258
212.
Paul Mellars, Kevin C. Gori, Martin Carr, Pedro A. Soares and Martin B. Richards. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2013;110(26). Available from: https://www.jstor.org/stable/42706546?seq=1#metadata_info_tab_contents
213.
Baldini JUL, Brown RJ, McElwaine JN. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Scientific Reports. 2015 Dec;5(1).
214.
Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith VC. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters. 2012 May 28;39(10):n/a-n/a.
215.
Allen JRM, Watts WA, Huntley B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International. 2000 Nov;73–74:91–110.
216.
Fitzsimmons KE, Hambach U, Veres D, Iovita R. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE. 2013 Jun 17;8(6).
217.
Woo JYL, Kilburn CRJ. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. Journal of Geophysical Research. 2010 Dec 24;115(B12).
218.
Fedele FG, Giaccio B, Isaia R, Orsi G. Ecosystem Impact of the Campanian Ignimbrite Eruption in Late Pleistocene Europe. Quaternary Research. 2002 May;57(3):420–4.
219.
Fedele FG, Giaccio B, Hajdas I. Timescales and cultural process at 40,000BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution. 2008 Nov;55(5):834–57.
220.
Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov ND, et al. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews. 2006 Nov;25(21–22):2713–28.
221.
The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0033589411000251?token=4E4EEC6191F39F42814BC42AAD9CF316D15FA910CEF7A1DE70CB8B236CE4BA69D520AD582BFAB2D648944AE366D7D6DD
222.
Hoffecker JF, Holliday VT, Anikovich MV, Sinitsyn AA, Popov VV, Lisitsyn SN, et al. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution. 2008 Nov;55(5):858–70.
223.
Andrei A. Sinitsyn. A Palaeolithic `Pompeii’ at Kostenki, Russia. (Research). Antiquity [Internet]. 77(295):9–15. Available from: https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA100484921&docType=Article&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA100484921&searchId=R1&userGroupName=uniaber&inPS=true
224.
Kathryn E Fitzsimmons. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE [Internet]. 2013;8(6). Available from: https://doaj.org/article/d962f3c36bb8435990b157d3376599d8
225.
Mellars P. The Neanderthal Problem Continued. Current Anthropology. 1999 Jun;40(3):341–64.
226.
John Lowe, Nick Barton, Simon Blockley, Christopher Bronk Ramsey, Victoria L. Cullen, William Davies, Clive Gamble, Katharine Grant, Mark Hardiman, Rupert Housley, Christine S. Lane, Sharen Lee, Mark Lewis, Alison MacLeod, Martin Menzies, Wolfgang Müller, Mark Pollard, Catherine Price, Andrew P. Roberts, Eelco J. Rohling, Chris Satow, Victoria C. Smith, Chris B. Stringer, Emma L. Tomlinson, Dustin White, Paul Albert, Ilenia Arienzo, Graeme Barker, Dušan Borić, Antonio Carandente, Lucia Civetta, Catherine Ferrier, Jean-Luc Guadelli, Panagiotis Karkanas, Margarita Koumouzelis, Ulrich C. Müller, Giovanni Orsi, Jörg Pross, Mauro Rosi, Ljiljiana Shalamanov-Korobar, Nikolay Sirakov and Polychronis C. Tzedakis. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2012;109(34). Available from: https://www.jstor.org/stable/41700966?seq=1#metadata_info_tab_contents
227.
Black BA, Neely RR, Manga M. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology. 2015 May;43(5):411–4.
228.
The timing and spatiotemporal patterning of Neanderthal disappearance. Nature [Internet]. 512(7514):306–10. Available from: https://go.gale.com/ps/i.do?p=AONE&u=uniaber&id=GALE|A379640969&v=2.1&it=r
229.
Paul Mellars. The earliest modern humans in Europe: the reanalysis of findings from two archaeological sites calls for a reassessment of when modern humans settled in Europe, and of Neanderthal cultural achievements. Nature [Internet]. 479(7374):483–6. Available from: https://go.gale.com/ps/i.do?&id=GALE|A274027588&v=2.1&u=uniaber&it=r&p=AONE&sw=w
230.
Mellars P. Neanderthals and the modern human colonization of Europe. Nature. 2004 Nov;432(7016):461–5.
231.
Paul Mellars and Jennifer C. French. Tenfold Population Increase in Western Europe at the Neandertal—to—Modern Human Transition. Science [Internet]. 2011;333(6042). Available from: https://www.jstor.org/stable/27978352?seq=1#metadata_info_tab_contents
232.
Mystery eruption traced to dangerous Italian volcano : Research Highlights [Internet]. Available from: https://www.nature.com/articles/d41586-019-01462-6
233.
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
234.
Michael Staubwasser. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences [Internet]. 2018 Sep 11;115(37):9116–21. Available from: https://www.pnas.org/content/115/37/9116
235.
João Zilhão. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology: Issues, News, and Reviews [Internet]. 2006;15(5):183–95. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/evan.20110
236.
M. Damaschke,R. Sulpizio,G. Zanchetta,B. Wagner,N. Nowaczyk,J. Rethemeyer. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate of the Past [Internet]. 2013;9(1):267–267. Available from: https://go.gale.com/ps/i.do?id=GALE%7CA481436213&v=2.1&u=uniaber&it=r&p=AONE&sw=w
237.
Villa P, Pollarolo L, Conforti J, Marra F, Biagioni C, Degano I, et al. From Neandertals to modern humans: New data on the Uluzzian. PLOS ONE. 2018 May 9;13(5).
238.
Mannella G, Giaccio B, Zanchetta G, Regattieri E, Niespolo EM, Pereira A, et al. Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews. 2019 Apr;210:190–210.
239.
Garcia Garriga J, Martínez Molina K, Baena Preysler J. Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory. 2012 Jul;25(2):81–121.
240.
Bond DPG, Grasby SE. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017 Jul;478:3–29.
241.
Lindström S, Sanei H, van de Schootbrugge B, Pedersen GK, Lesher CE, Tegner C, et al. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances. 2019 Oct;5(10).
242.
VAN DE SCHOOTBRUGGE B, WIGNALL PB. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine. 2016 Mar;153(2):332–54.
243.
Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China - Zhang et al., accepted.pdf [Internet]. Available from: http://eprints.whiterose.ac.uk/128432/1/Zhang%20et%20al.%2C%20accepted.pdf
244.
Paul E. Olsen. Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science [Internet]. 284(5414):604–5. Available from: https://go.gale.com/ps/i.do?&id=GALE|A54552300&v=2.1&u=uniaber&it=r&p=AONE&sw=w
245.
Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 2011 Sep;477(7364):312–6.
246.
Wignall PB. Large igneous provinces and mass extinctions. Earth-Science Reviews. 2001 Mar;53(1–2):1–33.
247.
Wignall P. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements. 2005 Dec 1;1(5):293–7.
248.
Ernst RE, Buchan KL, Campbell IH. Frontiers in large igneous province research. Lithos. 2005 Feb;79(3–4):271–97.
249.
Rampino MR, Caldeira K. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. International Journal of Earth Sciences. 2018 Mar;107(2):601–6.
250.
Saunders AD. Large Igneous Provinces: Origin and Environmental Consequences. Elements. 2005 Dec 1;1(5):259–63.
251.
Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature. 2011 Sep;477(7364):312–6.
252.
Grattan J. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos. 2005 Feb;79(3–4):343–53.
253.
Richard Stone. BACK FROM THE DEAD: The once-moribund idea that volcanism helped kill off the dinosaurs gains new credibility. Science [Internet]. 2014;346(6215). Available from: https://www.jstor.org/stable/24745481?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9Mw%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
254.
Steven M. Holland. Ecological disruption precedes mass extinction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2016;113(30). Available from: https://www.jstor.org/stable/26470935?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3Frefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
255.
Grasby SE, Them TR, Chen Z, Yin R, Ardakani OH. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews. 2019 Sep;196.
256.
Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters. 1999 Mar;166(3–4):177–95.
257.
Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events [Internet]. Available from: http://libra.msra.cn/Publication/5357742/age-of-the-emeishan-flood-magmatism-and-relations-to-permian-triassic-boundary-events
258.
Black BA, Hauri EH, Elkins-Tanton LT, Brown SM. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth and Planetary Science Letters. 2014 May;394:58–69.
259.
Black BA, Lamarque JF, Shields CA, Elkins-Tanton LT, Kiehl JT. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology. 2014 Jan;42(1):67–70.
260.
Grasby SE, Sanei H, Beauchamp B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience. 2011 Feb;4(2):104–7.
261.
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2012;109(1). Available from: https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
262.
Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC, Hesselbo SP, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters. 2015 Oct;428:267–80.
263.
Cui Y, Kump LR. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews. 2015 Oct;149:5–22.
264.
Darcy E. Ogden and Norman H. Sleep. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2012;109(1). Available from: https://www.jstor.org/stable/23076231?seq=1#metadata_info_tab_contents
265.
Ponomarenko AG. Insects during the time around the Permian—Triassic crisis. Paleontological Journal. 2016 Mar;50(2):174–86.
266.
JUN SHEN, YONG LEI, THOMAS J. ALGEO, QINGLAI FENG, THOMAS SERVAIS, JIANXIN YU and LIAN ZHOU. VOLCANIC EFFECTS ON MICROPLANKTON DURING THE PERMIAN-TRIASSIC TRANSITION (SHANGSI AND XINMIN, SOUTH CHINA). PALAIOS [Internet]. 2013;28(7). Available from: https://www.jstor.org/stable/43683731?seq=1#metadata_info_tab_contents
267.
Lawrence M. E. Percival, Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather and Jessica H. Whiteside. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2017;114(30). Available from: https://www.jstor.org/stable/26486132?Search=yes&resultItemClick=true&&searchUri=%2Ftopic%2Fmass-extinction-events%2F%3FsearchType%3DfacetSearch%26amp%3Bsd%3D%26amp%3Bed%3D%26amp%3Brefreqid%3Dexcelsior%253A4c7a3104ad8fb89411b0d3db9f073dbe%26amp%3Bpagemark%3DcGFnZU1hcms9NA%253D%253D%26amp%3Btopic%3Dmass-extinction-events%26amp%3Ballow_empty_query%3DTrue&ab_segments=0%2Fbasic_SYC-5055%2Fcontrol&seq=1#metadata_info_tab_contents
268.
Bercovici A, Cui Y, Forel MB, Yu J, Vajda V. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences. 2015 Feb;98:225–46.
269.
Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang and Xulong Lai. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science [Internet]. 2012;338(6105). Available from: https://www.jstor.org/stable/41704126?seq=1#metadata_info_tab_contents
270.
Keller G, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC, et al. Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India. 2011 Nov;78(5):399–428.
271.
Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S003101821730069X?token=9E59368BF1A480D19C41B03216AE62CFB032CE517B33FD17B2D4C8AFC4CD0C3014B95F72AD1F4E87F5D05888E6623F45
272.
Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0012821X19304133?token=9B50E6970E7293FB00EDE636D74F62EB0BA45C33FA245DAD1476902AD1287E896D7A6219235DCC54A359E42D94D895D0
273.
Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618206001455?token=51068B2B3A216D1053DAF06EDA03B11F9254BA3DB2935BA4E0499B93AA5E346C44F82B2D1D119DBDBB3155E2A46E61D1
274.
Negi JG, Agrawal PK, Pandey OP, Singh AP. A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors. 1993 Mar;76(3–4):189–97.
275.
Rampino MR. Relationship between impact-crater size and severity of related extinction episodes. Earth-Science Reviews. 2020 Feb;201.
276.
Multiple impacts across the Cretaceous–Tertiary boundary [Internet]. Available from: http://geoweb.princeton.edu/research/Paleontology/Keller_et_al._ESR_03.pdf
277.
Tandon SK. Records of the influence of Deccan volcanism on contemporary sedimentary environments in Central India. Sedimentary Geology. 2002 Mar;147(1–2):177–92.
278.
Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science. 2010 Mar 5;327(5970):1214–8.
279.
Keller G, Sahni A, Bajpai S. Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences. 2009 Nov;34(5):709–28.
280.
Wacey D, Saunders M, Cliff J, Kilburn MR, Kong C, Barley ME, et al. Geochemistry and nano-structure of a putative ∼3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Research. 2014 Aug;249:1–12.
281.
Maltman C, Walter G, Yurkov V. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLOS ONE. 2016 Feb 25;11(2).
282.
Hodel F, Macouin M, Trindade RIF, Triantafyllou A, Ganne J, Chavagnac V, et al. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications. 2018 Dec;9(1).
283.
Reigstad LJ, Jorgensen SL, Lauritzen SE, Schleper C, Urich T. Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology. 2011 Sep;11(7):665–78.
284.
Earth-Science Reviews. 2015;149. Available from: https://www.sciencedirect.com/journal/earth-science-reviews/vol/149
285.
GLIKSON A. Asteroid/comet impact clusters, flood basalts and mass extinctions: Significance of isotopic age overlaps. Earth and Planetary Science Letters. 2005 Aug 15;236(3–4):933–7.
286.
Fraser NC, Sues HD. The beginning of the ‘Age of Dinosaurs’: a brief overview of terrestrial biotic changes during the Triassic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2010 Sep;101(3–4):189–200.
287.
Percival LME, Ruhl M, Hesselbo SP, Jenkyns HC, Mather TA, Whiteside JH. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences. 2017 Jul 25;114(30):7929–34.
288.
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017 Jul;478:30–52.
289.
Fantasia A, Adatte T, Spangenberg JE, Font E. Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology. 2016 Jan;441:165–80.
290.
Grattan J, Torrence R, World Archaeological Congress. Living under the shadow: cultural impacts of volcanic eruptions [Internet]. Vol. 53. Walnut Creek, Calif: Left Coast Press; 2007. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3735715500002418&institutionId=2418&customerId=2415
291.
Cashman KV, Giordano G. Volcanoes and human history. Journal of Volcanology and Geothermal Research. 2008 Oct;176(3):325–9.
292.
Grattan J. Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization. Quaternary International. 2006 Jul;151(1):10–8.
293.
Riede F. Towards a science of past disasters. Natural Hazards. 2014 Mar;71(1):335–62.
294.
Social responses to volcanic eruptions: A review of key concepts | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618217315045?token=D8AE8C3A6359753D6D0FE577386A061826A84D07B8E6C82C0D1C416542362EBE8BEDAA531DDEE60B0A707677761F2FF5
295.
Volcanic activity and human society | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618215008782?token=4BFF11422C65A4796BA4C9B85C94A0B7DE2CE3EC2872FBD9AED51E61C6AE30A06AEF7CA8BF529763A550F5028E303F01
296.
Zanchetta G, Bini M, Di Vito MA, Sulpizio R, Sadori L. Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quaternary International. 2019 Jan;499:186–94.
297.
Volcanic disasters and agricultural intensification: A case study from the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S104061821100187X?token=957DD20CC0E7AB3C83F5CEA197075F2CFA510A05C918DD7CD29D1BC710AD7142C406CBEA0ED0B6CED53163B817079955
298.
Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618214002535?token=BAEB0FFE44FA5EFE4CB35DA787B0AB116092B6A013138A4AF71E913F0DDC8C2D1065BD17188411ABC2C390212810942E
299.
Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618214004625?token=929B4CAB03EC49E56F14B90156292EAAF6E8D54F7094F7B6CF5AE121276CECE216DD6C7A1DA67398981B648F9A2252DA
300.
Evidence of cultural responses to the impact of the Mazama ash fall from deeply stratified archaeological sites in southern Alberta, Canada | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618214005710?token=2963043EA7F872BCF96AAEA166AE865544D5787E1296D650809F7892FA0844B6E60DA91320E7AF252ADE63CD2B04B40D
301.
Prehistoric human responses to volcanic tephra fall events in the Ust-Kamchatsk region, Kamchatka Peninsula (Kamchatsky Krai, Russian Federation) during the middle to late Holocene (6000-500 cal BP) | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618215007090?token=5BC28A2B2576D0F5B208781B84A8A623845C2F735E442C62405C1B8234FC4D52B49F46FC00933D3242D0C641C1AA99E2
302.
Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618215013464?token=C6435D598538AB261293887A9839D0F615EA3E661366B9746077BA40CE4E82A1CAE480BA177CF0EA3DA60D027BDE68F2
303.
Torrence R, Grattan J. Natural disasters and cultural change [Internet]. Vol. One world archaeology. London: Routledge; 2002. Available from: http://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=3037231330002418&institutionId=2418&customerId=2415
304.
McGuire B. The archaeology of geological catastrophes. Vol. Geological Society special publication. Bath: Geological Society; 2000.
305.
Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications. 2017 Dec;8(1).
306.
Chester DK, Duncan AM, Dibben CJL. The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. Journal of Volcanology and Geothermal Research. 2008 May;172(3–4):216–28.
307.
Torrence R. Social responses to volcanic eruptions: A review of key concepts. Quaternary International. 2019 Jan;499:258–65.
308.
Riede F. Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quaternary International. 2019 Jan;499:266–77.
309.
Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo and Michael F. Sheridan. The Avellino 3780-yr-B.P. Catastrophe as a Worst-Case Scenario for a Future Eruption at Vesuvius. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2006;103(12). Available from: https://www.jstor.org/stable/30048947?seq=1#metadata_info_tab_contents
310.
Mastrolorenzo G, Pappalardo L. Hazard assessment of explosive volcanism at Somma-Vesuvius. Journal of Geophysical Research. 2010 Dec 31;115(B12).
311.
Haraldur Sigurdsson, Stanford Cashdollar and Stephen R. J. Sparks. The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology [Internet]. 1982;86(1):39–51. Available from: http://www.jstor.org/stable/504292
312.
Albore Livadie C, Pearce M, Delle Donne M, Pizzano N. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 2019 Jan;499:205–20.
313.
Milia A, Raspini A, Torrente MM. The dark nature of Somma-Vesuvius volcano: Evidence from the ∼3.5ka B.P. Avellino eruption. Quaternary International. 2007 Oct;173–174:57–66.
314.
The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy) | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618218301228?token=79D7A12B29C1F81D9D3A0F58F90748B005D19DBD1698C5B59903C6A4FA58AAF79F27FA7FF61D9E3F4E5D31ACD812EFE4
315.
Di Vito MA, Talamo P, de Vita S, Rucco I, Zanchetta G, Cesarano M. Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quaternary International. 2019 Jan;499:231–44.
316.
Convertito V, Zollo A. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology. 2011 Aug;73(6):767–83.
317.
Gurioli L, Sulpizio R, Cioni R, Sbrana A, Santacroce R, Luperini W, et al. Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bulletin of Volcanology. 2010 Nov;72(9):1021–38.
318.
Senatore MR, Ciarallo A, Stanley JD. Pompeii Damaged by Volcaniclastic Debris Flows Triggered Centuries Prior to the 79 A.D. Vesuvius Eruption. Geoarchaeology. 2014 Jan;29(1):1–15.
319.
Mastrolorenzo G, Palladino DM, Vecchio G, Taddeucci J. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. Journal of Volcanology and Geothermal Research. 2002 Mar;113(1–2):19–36.
320.
Albore Livadie C, Pearce M, Delle Donne M, Pizzano N. The effects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quaternary International. 2019 Jan;499:205–20.
321.
Driessen J. The Santorini eruption. An archaeological investigation of its distal impacts on Minoan Crete. Quaternary International. 2019 Jan;499:195–204.
322.
Monaghan JJ, Bicknell PJ, Humble RJ. Volcanoes, Tsunamis and the demise of the Minoans. Physica D: Nonlinear Phenomena. 1994 Oct;77(1–3):217–28.
323.
Pearson CL, Brewer PW, Brown D, Heaton TJ, Hodgins GWL, Jull AJT, et al. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances. 2018 Aug;4(8).
324.
Athanassas CD, Modis K, Alçiçek MC, Theodorakopoulou K. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 2018 Apr 3;23(2):160–76.
325.
Tephra in caves_ Distal deposits of the Minoan Santorini eruption and the Campanian super-eruption | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S104061821830483X?token=FF97A2D0F179AEA3E8E8909A3A8E38803125C16540DAB9417F1FA46681CADA03AD31278979F2E0840ADF2C84BD7788E0
326.
Paolo Cherubini. The olive-branch dating of the Santorini eruption. Antiquity [Internet]. 88(339):267–74. Available from: https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA363102251&docType=Report&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&contentSet=GALE%7CA363102251&searchId=R1&userGroupName=uniaber&inPS=true
327.
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece) - srep12243.pdf [Internet]. Available from: https://www.nature.com/articles/srep12243.pdf
328.
Panagiotakopulu E, Higham T, Sarpaki A, Buckland P, Doumas C. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften. 2013 Jul;100(7):683–9.
329.
Sturt W. Manning. Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity [Internet]. 88(342):1164–80. Available from: https://go.gale.com/ps/i.do?&id=GALE|A398627713&v=2.1&u=uniaber&it=r&p=AONE&sw=w
330.
Medical papyri describe the effects of the Santorinieruption on human health, and date the eruptionto August 1603–March 1601 BC. Available from: https://reader.elsevier.com/reader/sd/pii/S0306987706005573?token=DAEB1FCD9B957C164CCFDE1E2DF78C6E4CCB706CF0CA20256DFBEEA257D11E5BFABC31BF10FD91E9032E5D494AC1EE0A
331.
Athanassas CD, Modis K, Alçiçek MC, Theodorakopoulou K. Contouring the Cataclysm: A Geographical Analysis of the Effects of the Minoan Eruption of the Santorini Volcano. Environmental Archaeology. 2018 Apr 3;23(2):160–76.
332.
Knappett, CarlRivers, RayEvans, Tim. The Theran eruption and Minoan Palatial Collapse. 85(9):1008–23. Available from: https://search.proquest.com/docview/896272713/fulltextPDF/3F1AFA67A52F429DPQ/1?accountid=14783
333.
Bottema S, Sarpaki A. Environmental change in Crete: a 9000-year record of Holocene vegetation                history and the effect of the Santorini eruption. The Holocene. 2003 Jul;13(5):733–49.
334.
Speleothems as sensitive recorders of volcanic eruptions – the Bronze Age Minoan eruption recorded in a stalagmite from Turkey | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S0012821X14000570?token=2ABFE04AD3F8AB8DC1684D2DA9B5701D6D87666872A5151EB04D3C6DD789F7DAD3721FDAED98C0B86CCC361E9E92334D
335.
Six medical papyri describe the effect of Santorini’s volcanic ash. Available from: https://reader.elsevier.com/reader/sd/pii/S0306987706000491?token=13233F3D8053237EAA0B5D4307D4EF02C39F56EAC3CF666212510A196E0D3ED2628EFCCD16403A858298DDD537A22B50
336.
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 2006 Jan;66(1):193–6.
337.
Periáñez R, Abril JM. Modelling tsunamis in the Eastern Mediterranean Sea. Application to the Minoan Santorini tsunami sequence as a potential scenario for the biblical Exodus. Journal of Marine Systems. 2014 Nov;139:91–102.
338.
Modeling cultural responses to volcanic disaster in the ancient Jama-Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience | Elsevier Enhanced Reader. Available from: https://reader.elsevier.com/reader/sd/pii/S1040618215008794?token=C280BD04B409C9B696DD4724F4EFBFC8BD31FD9BFFED653A8B81C65448BD2DD0D6031E8C65D26942772EC00E7E72596D
339.
Abbott DA, Sheets PD, Cooper J. Surviving Sudden Environmental Change: Answers from Archaeology [Internet]. 1st ed. Boulder, Colo: University Press of Colorado; 2012. Available from: https://eu.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=5195538870002418&institutionId=2418&customerId=2415
340.
Hartmann WK, Malin M, McEwen A, Carr M, Soderblom L, Thomas P, et al. Evidence for recent volcanism on Mars from crater counts. Nature. 1999 Feb 18;397(6720):586–9.
341.
Cousins CR, Crawford IA. Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology. 2011 Sep;11(7):695–710.
342.
Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research. 1992;97(E8).
343.
Terrestrial Volcanism in Space and Time - Annual Review of Earth and Planetary Sciences, 21(1):427 [Internet]. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.21.050193.002235
344.
Lopes RMC, Mitchell KL, Williams D, Mitri G. Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. In: What is a volcano? [Internet]. Boulder, Colo: Geological Society of America; p. 11–30. Available from: http://specialpapers.gsapubs.org/lookup/doi/10.1130/2010.2470%2802%29
345.
Volcanism and tectonics on Venus [Internet]. Available from: http://www.es.ucsc.edu/~fnimmo/website/paper5.pdf
346.
Strom RG, Schaber GG, Dawson DD. The global resurfacing of Venus. Journal of Geophysical Research. 1994;99(E5).
347.
Hints of a volcanically active exomoon. Space Daily [Internet]. 2011; Available from: https://whel-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_gale_ofg597833465&context=PC&vid=44WHELF_ABW_VU1&lang=en_US&search_scope=Blended&adaptor=primo_central_multiple_fe&tab=blended&query=any,contains,exo%20volcanism&offset=0
348.
van Summeren J, Conrad CP, Gaidos E. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS. The Astrophysical Journal. 2011 Jul 20;736(1).
349.
Parnell J. Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. International Journal of Astrobiology. 2005 Oct;4(3–4):175–86.
350.
Kaltenegger L, Henning WG, Sasselov DD. DETECTING VOLCANISM ON EXTRASOLAR PLANETS. The Astronomical Journal. 2010 Nov 1;140(5):1370–80.
351.
Buizert C, Sigl M, Severi M, Markle BR, Wettstein JJ, McConnell JR, et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature. 2018 Nov;563(7733):681–5.
352.
Trevisanato SI. Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout. Medical Hypotheses. 2006 Jan;66(1):193–6.
353.
Thouret JC, Lavigne F, Kelfoun K, Bronto S. Toward a revised hazard assessment at Merapi volcano, Central Java. Journal of Volcanology and Geothermal Research. 2000 Jul;100(1–4):479–502.
354.
Ernst RE, Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017 Jul;478:30–52.